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These notes are taken from talks and lectures in 2018 AG Program at SCMS, covering several
central topics in AG.
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0.1 Topic 1 : Cohomological perspective on Moduli space

0.1.1 Prof.Rahul Pandharipande’s Distinguished lectures

Moduli of K3 surfaces and Lehn’s conjecture and further developments

Lecture 1:

Let S →M be a family of surface. eg,

• M = pt ,

• M = moduli space of q-p K3 of �xed degree, S = universal K3.

• M = Mд ×Mh , S = Cд × Ch
let L → S be a line bundle, then one can de�ne family of tautological bundles

L[n] // S[n]
p
��

M

(0.1)

∀Z ∈ S[n], Zx ⊂ Sx is a subscheme of length n for any x ∈ M. The �ber of L[n] at Z is just

H 0(Z ,L|Z )

Globally construction of L[n] will use universal subscheme

S

S × S[n] ⊃ U [n]

p1
55

p2 ))
S[n]

and L[n] := (p1)∗(OU [n] ⊗ p∗2L)

Q: what is p∗(s(L[n])) ∈ A∗(M)

1. For = pt , it is equivalent to study
∫
S [n] s2n(L[n]) =?

The known result so far

1. M.Lehn 1999

2. MOP 2015, C.Voisin 2017, Mellit.

More generally, ε ∈ K(S), one de�ne ε[n] via virtual computation since each ε ∈ K(S) can be
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written as
ε = [E1] + [E2].. + [Er ] − [V1] − .. − [Vs ]

where Ei ,Vj are vector bundles over S . then one can also ask the same question.

For line bundle L, de�ne the kappa classes

κ[a,b, c] := p∗(c1(TS/M)ac2(TS/M)bLc ) ∈ A∗(M) (0.2)

Theorem 0.1.1. p∗(s(L[n])) is a universal polynomial in κ[a,b, c].

Computation for toric surface via localization.

Assume S = C2. we have natural torus action T = C∗ × C∗ on C2 via

(s, t) × (z1, z2) 7→ (sz1, tz2)

It lifts to Sn. Then the �xed locus is

(Sn)T = t
σ `n

Iσ

where the ideal Iσ ⊂ C[z1, z2] corresponds to a partition σ of n, ie,

Iσ =

Then the AB localization formula will give

Z (s, t ,q,w)

6
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Lecture 2:
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Lecture 3:
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Appendix: ideas of proofs to the existence of universal polynomial

1. Complex cobordism groups ΩC:
De�nition 0.1.2.
Proposition 0.1.3. (J.Milnor, D.Quillen)

• ΩC is is a polynomial ring with generators {[Pn] : n ∈ Z≥0}, ie,

ΩC = C[[P0], [P1], ...]

• ΩC has natural graded structure by dimension.

Proof. �

Denote [S [n]] ∈ Ω the cobordism class of Hilbert scheme of points on smooth projective surface
and set

H (S) :=
∑
n≥0
[S [n]]zn ∈ Ω[[z]]

Then shows
Theorem 0.1.4. H (S) is independent of choice of cobordism class [S] ∈ Ω of S .

9
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A.Okounkov: For L, M ∈ Pic(S), and characteristics f : KT (S [n]) → HT (S [n]), de�ne

< f >:=
∑
n

qn
∫
S [n]

f (L[n])Euler (TS [n] ⊗ M [n]) ∈ H ∗T (pt)[[q]]

Theorem 0.1.5. A.Okounkov

< 1 >=
∑
n

qn
∫
S [n]

Euler (TS [n] ⊗ M [n]) =
∏
n>0
(1 − qn)−

∫
S c2(TS ⊗M )

De�ne
< f >′:= < f >

< 1 >

My comments:

1. Is there deep relation between counting theory of S and S[n] ?

10
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0.1.2 Theory of Tautological integral
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0.1.3 Introductory talk 1: Algebraic stacks

De�nition 0.1.6. p : F → C is called category �bered over C (CFG) if
De�nition 0.1.7. p : F → C is called category �bered over C if
De�nition 0.1.8. C := category of S-scheme. one call a functorM : C → Sets is a moduli
functor ifM(T ) is a T -family of geometric objects modulo some equivalence (eg, isomorphic).

M is called representable (�ne moduli space) if there is a S-schemeM ∈ C st:

Hom(,M) �M

M is said to have coase moduli space if there is a S-schemeM ∈ C and a natural transformation
from Hom(,M) toM and 1 − 1 correspondence

Hom(S,M) → M(S)

usually, a moduli functor from AG is not a representable (as far as I know, the only representable
one is Quot scheme or its variant). The main obstruction is the existence of isotrivial but not
trivial families, ie,

B′ × X0 = X′

��

// X

��

B′
etale

// B

(0.3)

one typical example is functor
M : C → Sets

T 7→ {iso classs o f line bundles on T }

Proof. �

Lemma 0.1.9. (Yoneda lemma)
F → C is a groupoid

Proof. For char (k) = 0, �

• Algebraic stacks.

• DM stacks.

• Artin stacks.

12
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Examples:

We always use C := sch(C).

1. The moduli stack of genus д with n-pointed curveMд,n is a separated smooth proper DM
stack:

2. The moduli stack Bundr,d (C) of vector bundles of rank r and degreed over a smooth projective
curve C over k is a stack.

3. Hilbert scheme is a �ne moduli space. consider

13
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0.1.4 Introductory talk 2: Hilbert schemes of points on surface

X :=smooth surface. de�ne

X [n] := {Z ⊂ X : 0 − dim, lenдth(OZ ) = n}

Theorem 0.1.10. X [n] is a smooth of dim = 2n. In particular, if X is irreducible projective, then
so is X [n].

Proof. �

one can also switch viewpoint and treat X [n] as moduli space of certain sheaves on X . eg,

K3[n] � MH (v), v = (1, 0,n)

Cohomology of X [n]: Representation theory and geometry !

We can view X [n] is a resolution of quotient singularities via Hilbert-chow morphism

X [n] → X (n)

in particular, n = 2, X [2] = Bl4(X (2)).
Theorem 0.1.11. (L.Gotte )

1. The Pincare polynomial for X [n] is given by∑
n=0

Pz (X [n])tn =
∏
m

(0.4)

2. The motive of X [n]

Proof. �

14
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Curve case: Macdonald’s formula and its generation by Maulik and Yun
Theorem 0.1.12. C is a projective integral curve over k of arithmetic genus д with planar singu-
larities only.

Proof. skecth: �

15
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Remarks:

1. For X = K3, the formula implies

De�ne incidence Hilbert scheme X [m,n] := {(ξ ,η) ∈ X [m] ×X [n] : ξ ⊂ η}, it’s a correspondence
between X [m] and X [n]. naturally there is

X [m,n]

p1
��

p2
// X [n]

X [m]

Given a homology class α ∈ Hk (X ), de�ne

X [m,n]
α := {(ξ ,η) ∈ X [m] × X [n] : ξ ⊂ η, supp(

Iξ

Iη
) = point ∈ α }

then X [m,n]
α ⊂ X [m] × X [n] is an irreducible closed subscheme of dimX [m,n]

α = 2m + (n −m)k .
In particular, if α is a curve in S , then X [m,n]

α ⊂ X [m] × X [n] is a Langarigian submanifold.

Fork space
F := ⊕

n≥0
H ∗(X [n],Q)

H.Nakajima de�ned creation and annihilation operation on F for each α ∈ H∗(X ):

i > 0, ai (α) : F→ F by θ 7→ (p2)∗(p∗1θ ∩ X
[m,m+i]
α )

for each θ ∈ H ∗(X [m]).
Theorem 0.1.13. (Nakajima, Grojnouski)

Form,n ∈ Z − {0} and (−1)deд(α )·deд(β ) = 1, then

[am(α),an(β)] = (−1)m−nm < α , β > δm,nid (0.5)

where

Proof. �

Theorem 0.1.14.

Proof. �

16
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0.1.5 Introductory talk 3: Algebraic cycles

Theorem 0.1.15.

Proof. �

Theorem 0.1.16.

Proof. �

17
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0.1.6 Introductory talk 4: VHS

Theorem 0.1.17.

Proof. �

Theorem 0.1.18.

Proof. �

18
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0.1.7 Talk 1: Perservese sheaf, Hilbert scheme and P =W conjecture

Talk given by Junliang Shen 1. Motivation: P =W conjecture

Assume C smooth projective curve over C and G = GL(n). Fixed rank=r and degree d st:
(r ,d) = 1.

MH := {(E,θ )) : s .s Hiддis bundle}

MC := Hom(π1(C),G)//G

The character variety is an a�ne variety of dim = д. The remarkable theorems of nonabelian
Hodge theory shows
Theorem 0.1.19. (S.Donaldson, Yau-Ulenbeck, C.Simpons,..)
There is real analytic isomorphism

MH � MC

Naturally, it implies
H ∗(MH ,Q) � H ∗(MC ,Q) (0.6)

But How about the Hodge structure ?

The so-called P =W conjecture of MAA De Cataldo, T.Hausel, L.Migliorini (see ??) predicts

Pk �W (0.7)

In the same paper, then should the case rank = 2.

2. Perseverse �ltration

19
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0.1.8 Talk 2: Application of Mixed spin fields

.

Physics side: BCOV’s holomorphic anomaly equation 93 (see ??), Yamachi-Yau’s polynomial
structure 04 (see ??),

Mathematical side:

• Givatal, LLY, 96, д = 0.

• A.Zinger, Li, Vakil, 05, д = 1.

Qunitic CY and construction of its mirror:

Xψ = {z51 + ..z51 +ψz1 · ... · z5 = 0}

The 1 dimesional family mirrors Q̂ψ of Q = {z51 + ..z51 = 0} is resolution of Xψ /G.

Put
I0 + hI1 + h

2I2 + h
3I3 = eht (0.8)

consider C5 ×C with coordinate (x1, ..,x5,p) and C∗ action of weight (1, 1, 1, 1, 1,−5). Then two
GIT quotients can be identi�ed as

(C5 − 0 × C)/C∗ = KP4

(C5 × C) − 0/C∗ = [C5/Z5]

20
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0.1.9 Talk 3: Cosection localization and quantum singularity theory

.
In 1993, E.Witten (see 0.50) propose to count

#{Spin curves + sections +Witten′s equation}

LG/CY correspondence :
GW (Q) ⇔ F JRW (C5/µ5

W−−→ C)

History:

• FJR (2013): math theory for Witten’s idea via analytical methods (cohFT) (see 0.50).

• Po - (2016) algebraic methods via matrix factorization and Hoshild homology (see 0.50).

• Chang-Li-Kiem (2015) algebraic methods via cosection localization (see 0.50) which works
for narrow sectors only.

Recently, the work of JunLi and Kiem (see 0.50) extends theory so that it works for all sectors !

21
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Borel-More homology For a topological spaceX , which can be embedded into am-dimensional
smooth manifold M as a closed subset, then one de�nes

HBM
i (X ) := Hm−i (M,M − X ) (0.9)

where the relative cohomology is the usual singular cohomology.

Fact: the de�nition is independent of the choice of embedding.

Borel-More homology has the following basic properties:

1. Proper pushforward

2. Flat pullback

3.

4. If X is compact and locally contractible, then

HBM
i (X ) � Hi (X )

by Alexander-Lefschetz.
Theorem 0.1.20. (Kiem-Li, see ??)
M DM stack with obstruction theory. IfU ⊂ M open st: σ : obs |U � OU , ie, σ ∈ H 0(obs∨ |U ) is a
cosection. Then ∃ virtual cycle [M]virloc ∈ A∗(M(σ )) st:

ι∗[M]virloc = [M]
vir ∈ A∗(M)

where ι :M(σ ) :=M −U ↪→M open inclusion.

Proof. E →M vector bundle with cosection σ : E |U → OU . E(σ ) := E |U ∪ ker(σ )

E(σ )

��

ι̃ // E

��

M(σ ) ι
//M

The localised virtual cycle [M]virloc := 0!Cσ is given by localised Gysin map where Cσ := is the
intrinc normal cone �

22
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0.1.10 Talk 4: Debarre-Voisin variety

.

V := 10 dimensional C vector space. 0 , σ ∈ ∧3V , de�ne

Kσ := {U ∈ Gr (6,V ) : σ |∧3U = 0} (0.10)

Theorem 0.1.21. (Debarre-Voisin, see 0.50)

• For generic σ ∈ ∧3V , Kσ is a HK of type K3[2].

• qBB(Pσ ) = 22 for the Plucker polarization Pσ for Kσ .

•

Proof. �

consider GIT moduli space

mDV := P
3∧
V //PGL(V ) ⊃ mo

DV

where mo
DV is the moduli space of smooth DV varieties.

Let Λ = E8(−1)2 ⊕ U 3 ⊕ A1 be the lattice of K3[2] and v ∈ Λ with v2 = 22. Λv := v⊥. the period
domain

D/Γ, D := {z ∈ PΛC : (z, z) = 0, (z, z) > 0 }+

where Γ is monodromy group. Markanman have computed the monodromy group for K3[n]:

The period map
ρDV : mDV → (D/Γ)BB

Question: what’s the image ρDV ? and boundary ?

0.1.11 Talk 5: Bo� vanishing

Theorem 0.1.22. (R.Bott see 0.50) L ∈ Pic(Pn
C
) ample X := Pn , then

H i (X ,Ωj
X ⊗ L) = 0, ∀ i, j > 0 (0.11)

Proof. �

23
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In general, we call X has Bott vanishing (BV) if 0.50 holds.

Remarks:

1. j = dimX , it is Kodaria vanishing.

2. More generally, E → X is positive holomorphic bundle on a n-dimensional compact
complex manifold, then Akizuki-Kodaira-Nakano vanishing theorem states

H i (X ,Ωj
X ⊗ E) = 0, ∀ i + j > n + 1 (0.12)

3. X is any fano

4. X= n dimensional smooth fano projective st: ∃ perfect pairs

Ω1
X × Ωn−1

X → Ωn
X � ωX

then TX � Ωn−1
X ⊗ ω∨X , thus

H 1(X ,TX ) = H 1(X ,Ωn−1
X ⊗ ω∨X ) = 0

by BV. This implies X is rigid, ie, no deformation of complex structures !
Corollary 0.1.23.

BV holds only for �nitely many smooth projective n dimensional fano varieties for all n.

Proof. The discussion in remarks shows it has only 0-dimensional moduli. �

Theorem 0.1.24. (V.I.Danilov ) all smooth toric projective varieties satisfy BV over any �eld k .

Proof. sketch �

eg: X = P(OP1 ⊕ OP1(a)) Hirebruch surface. It is toric only for a and BV holds.

24
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Bott vanishing for K3:

Let X be a K3 surface and L ample. Then BV is equivalent to

H 1(Ω1
X ⊗ L) = 0

Lemma 0.1.25. χ (Ω1
X ⊗ L) = h0(Ω1

X ⊗ L) − h1(Ω1
X ⊗ L) = L2 − 20

Proof. It is a consequence of vanishing and HRR.

Note that
c1(Ω1

X ⊗ L) = c1(Ω1
X ) + 2c1(L)

c2(Ω1
X ⊗ L) = c2(Ω1

X ) + c1(Ω1
X )c1(L) + c1(L)2

�

Remark: BV fails for L2 < 20.

Lemma 0.1.26. (Burt.Totaro)
BV is a zariski open property.

Proof. �

Examples:

1. X = { f = 0} ∈ |OP3(4)| smooth quartic K3, then Pic(X ) = ZH , H = OX (1), H 2 = 4ïĳŇ
L := aH for a ≥ 3 so that L2 = 4a2 > 20. For any HK, a global nonzero holomorphic 2-form σ
will induce TX � Ω1

X so
H 1(X ,Ω1(a)) = H 1(X ,TX (a))

The Kodiara-Nadel vanishing implies

H 2(X ,Ω1(a)) = H 2(X ,TX (a)) = 0

The standard sequence

0→ TX → TP3 |X → NX = OX (4) → 0 (0.13)

It gives long exact sequence of cohomology

0→ H 0(TX (a)) → H 0(TP3(a)|X )
µ
−→ H 0(OX (4 + a)) →

H 1(TX (a)) → H 1(TP3(a)|X ) → H 1(OX (4 + a)) = 0
(0.14)

25
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Note that if µ is surjective, then

h1(TX (a)) = h0(TX (a)) − χ (TX (a))

= h0(TP3(a)|X ) − h0(OX (4 + a)) − 4a2 + 20 = 0

combining the Euler sequence

0→ OX → ⊕
4
OX (1) → TP3 |X → 0 (0.15)

one can identify

H 0(TP3(a)|X ) = {−→v = (v0,v1,v2,v3) : vi ∈ H 0(OP3(a + 1))}
≡ (f ) & v0 = v1 = v2 = v3

(0.16)

and
H 0(NX (a)) = {w ∈ H 0(OP3(a + 4))} ≡ (f ) (0.17)

the restriction mapµ to the normal direction is given by

−→v 7→ −→v · ∇f =
∑

vi
∂ f

∂xi

Observe that there is a decomposition (actually it comes from exact sequence 0.50 )

C[x0, ..,x3]a+4 = f · C[x0, ..,x3]a ⊕ H 0(N (a))

so we can identify
Im(µ) = {

∑
vi
∂ f

∂xi
: vi ∈ H 0(N (a + 1))}

If f = x40 + ...x
4
3 , ie, X is Fermat K3, then ∂f

∂xi
= 3x3i , for a = 3, then

x20x
2
1x

2
2x3 ∈ H 0(N (3)) = H 0(O(7), x20x21x22x3 < Im(µ)

So Bott-vanishing fails for Fermat K3 w.r.t L = O(3).

2. X ∈ |OP1×P2(2, 3)|, then Pic(X ) = ZH1 ⊕ ZH2 and

H 2
1 =, H1.H2 =, H

2
2 =

By Kleiman criterion, The ample cone of X

Amp(X ) = {L = aH1 + bH2 :}

26
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consider the bott vanishing locus in moduli space of q-p K3

KBV
д := {(S,L) ∈ Kд : H 1(TX ⊗ L) = 0}

or
KBV ,n
д := {(S,L) ∈ Kд : H 1(TX ⊗ Ln) = 0}

The following basic questions will be interesting

• when KBV
д and KBV ,n

д is nonempty ? Is there numerical criterion and geometric explana-
tion ?

• If these locus nonempty, the [KBV
д ] ∈ H ∗(Kд) tautological ?

3. For a (X ,L) ∈ Kд with L very ample, φ : X → Pд , one has

0→ H 0(TX ⊗ L) → H 0(TPд |X ⊗ L)
µ
−→ H 0(N ⊗ L) →

H 1(TX ⊗ L) → H 1(TPд |X ⊗ L) → H 1(OX (N ⊗ L) = 0
(0.18)

4. X is a Calabi-Yau n-fold
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Key observation:

Consider two groups of moduli stack Fд , Kд and Pд ,Mд de�ned

Fд(B) := {(V,S) → B : K3
Vb = 2д − 2, S ∈ | − KVb |}

Pд(B) := {(S,C) → B : C2b = 2д − 2}

with natural forgetful maps

sд : Fд → Kд, pд : Kд →Mд

More generally, one can pose some requirements of Picard lattice of parameterizing objects and
consider FRд ,KR

д
Theorem 0.1.27. (Mukai, Beaville)

1. Fд is a smooth

2.

Proof. Deformation theory discussion.

Fact: For smooth pair Y ⊂ X , its deformation is controlled by the sheaf TX (Y ) of holomorphic
vector �elds on X tangent to Y :

obs = H 2(TX (Y )), T1 = H 1(TX (Y ))

and the restriction map
0→ TX ⊗ IY → TX (Y ) r−→ TY

induces maps of 1st order deformations of two moduli problems.

For a general (V , S) ∈ Fд ,
obs = H 2(V ,TV (S)) = 0

For a general (S,C) ∈ Pд ,
0→ TS⊗ → TS(C) → TC (0.19)

where TS(C) is sheaf of holomorphic vector �elds on S tangent to C . one see

obs = H 2(S,TS ⊗ O(C)) = 0, tan = H 1(S,TS ⊗ O(C))

So the 1st deformation for Pд is unobstructed and it is a smooth stack. The tangent map induced
by pд at (S,C) is identi�ed with natural cohomology maps

dpд : T(S,C)Pд = H 1(C,TS |C ) → TCMд = H 1(C,NC/S ) = H 1(C,Ω1
C )
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induced by exact sequence 0.19. thus, its kernel

kerdpд =

�
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0.1.12 Talk 6: cubic 4-folds and noncommutative K3

.

C := moduli space of smooth cubic 4-fold.

Kuznetsov component of X ∈ C is de�ned as

Ku(X ) :=< OX ,OX (1),OX (2) >⊥

= {E ∈ Db (X ) : Ext j (OX (i),E) = 0, i = 0, i, 2}

Theorem 0.1.28. stab(Ku(X )) , ϕ. More precisely, ∃ connected component

stab(Ku(X )o)
φ
−→ P+o (Ku(X ))

Proof. �

Theorem 0.1.29. 0 , v ∈ Halд primitive and σ ∈ stabo . ThenMσ (v) , ϕ i� < v,v >≥ −2. For
generic σ ,Mσ (v) is a smooth IHS of dim =< v,v > +2 and ∃ lσ ∈ N 1(Mσ (v)) ample.

Proof. �

Examples

1. v2 = −2 i� Mσ (v) is points

30



(version November 12, 2020) 31

0.1.13 Talk 7: compactification of moduli spaces

Theorem 0.1.30. There is a compact moduli space for KSBA stable Varieties.

Proof. �

Lemma 0.1.31. Log K3 with

Proof. �
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0.1.14 Talk 8: Mathematical Moonshine and curve counting

.

1.
Theorem 0.1.32.

Proof. �

Theorem 0.1.33.

Proof. �
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0.1.15 Talk 9: Higgs bundle and hyperbolicities

Theorem 0.1.34.

Proof. �
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0.1.16 Talk 10: fundamental groups of degenerate varieties

.

1. Motivation

Let f : (X ,X) → (Y ,Y) be a morphism of log scheme /C.
Theorem 0.1.35.

Proof. �

2. Log geometry
De�nition 0.1.36. X ∈ sch(k) and a homomorphism of sheaves of monoids α : M → OX is
called log structure if

α : α−1(O∗X )
�−→ O∗X

where monoidal structure for OX is given by multiplication.

eg:

X smooth variety /k and D ⊂ X normal crossing divisor.M :=

Theorem 0.1.37.

Proof. �
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0.2 Topic 2 : Construction and compactification of Moduli space

0.2.1 Prof.E.J.N. Looijenga’s Distinguished lectures

Compacti�cation of certain locally symmetric varieties related to Algebraic Geometry

V := R-vector space of dimV = 2 + n with a bilinear form

<, >: V ×V → R

of signature (2,n).

O(V ) := {}

Gr+(2,V ) := {α ∈ Gr (2,V ) : α > 0}

Baily-Borel compacti�cation of LSS

Baily-Borel compacti�cation of arrangements of LSS

Toric compacti�cation LSS

Basic Example 1: H = SL2(R)/SO2(R)

step1:

H

p(τ )=e2π
√
−1τ
��

j(τ )=
// C

D∗
µ

>>

step2: Hc := {z ∈ H : im(z) > c}, Γ0 :=< T >≤ SL2(Z).

Fact: For c � 0, z1, z2 ∈ Hc are Γ0-equivalent i� z1, z2 ∈ H is SL2(Z)-equivalent.

This shows
C

D∗c := p(Hc ) = {z ∈ C : 0 < |z | < e−2πc }

µ
22

++
Dc = D

∗
c

Then one glue Dc and C along D∗c to obtain

P1 � C ∪D∗c Dc
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Basic Example 2: Siegal upper half planes Hд
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0.2.2 Prof.Radu Laza’s Distinguished lectures

Birational geometry of the moduli of K3 surfaces, and applications

Eg: E := C/Λτ , Λτ := Z + τZ, τ ∈ H

Classical theory shows E ↪→ P2 holomorphically embedded by Weistrass function

z 7→ [1, ϱ(z), ϱ ′(z)], (ϱ ′(z))2 =

where ϱ(z) := ∑
λ∈Λτ −{0}

1
(z−λ)2 . ie, each elliptic curve can be realised as a cubic plane curve.

Theorem 0.2.1. There is isomorphism between two compacti�cation

(H)BB/SL2(Z � |OP2(3)|//SL(3)

with boundary correspondence ∞ ⇔ strictly semistable cubics. Here strictly semistable cubics
consist of

• 3 lines xyz = 0

• line with conic

• Nodal cubic.

Proof. �

In general, there are 3 ways to construct moduli space in AG:

• GIT

It Needs to �x an embedding but unfortunately it has no canonical choice of the embedding
and usually the asymtopic GIT fails.

• Hodge theory

It is excellent when it works and translate problems into lattice. But it depends heavily
on Torelli theorem.

• Moduli approach: KSBA

It depends on the techniques from Birational geometry but hard to explicitly describe.
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0.2.3 Prof.Nagaiming Mok’s Distinguished lectures

uniformations of locally symmetric space

Di�erential geometry of locally symmetric spaces:

Ω ⊂ Cn bounded domain with Γ ⊂ Aut(Ω) discrete subgroup.

X := Ω/Γ

some rigidity properties of locally symmetric spaces

Bergman metric

H2(Ω) := {φ ∈ C∞(Ω) :‖ φ ‖2:=
∫
Ω
dµ(|∇φ |2 + |φ |2) < ∞}

choosing an orthornormal basis { fn(z)}, one de�ne the Bergman kernel as

KΩ(z,w) :=
∑
n

fn(z)fn(w) (0.20)

Examples:

1. Ω := Bn := {z = (z1, .., zn) ∈ Cn : |z |2 ≤ 1} unit ball, then

2. Ω := Bn := ∆n polydisc, then

Background source from AG:

1. Moduli space of PPAV /C.

By Torelli theorem of д-dimensional (A,Θ), the coarse moduli space Aд can be realised as the
quotient of Siegel upper half plane

Aд := Hд/Sp(д), Hд := {M : Im(M) > 0}

Q: For me, I am wondering the di�erential geometry will be helpful for us to understand the
cohomology of locally symmetric space ?
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0.3 Topic 3 : Enumerative geometry based on Moduli space

0.3.1 Prof.Yukinobu Toda’s Distinguished lectures

Birational geometry for d-critical loci and wall-crossing in Calabi-Yau 3-folds

1. Motivation

X ∈ sm.proj .Var (C) and v ∈ Γ := Im(ch : K(X ) → H 2∗(X ,Q)) primitive.

For σ ∈ Stab(X ), Mσ (v) := moduli space of σ -s.s. objects E in Db (X ) with ch(E) = v .

Wall-Crossing:

Basic Questions:

1. How Mσ (v) changes when σ crosses the wall in Stab(X ) ?

2. How Db (Mσ (v)) changes when σ crosses the wall in Stab(X ) ?

X is K3, then

• Mσ (v) has symplectic structure.

• Mσ +(v) d Mσ −(v) is symplectic �op (B-M).

• Db (Mσ +(v)) � Db (Mσ −(v)).

X CY 3-fold

• Mσ (v) has (−1)-shifted symplectic structure.

•

•

m:= moduli stack of E ∈ Db (X ) with Ext i (E,E) = 0.

mσ (v):= moduli stack of σ s.s objects E ∈ Db (X ) with Ext i (E,E) = 0.

2. D-critical locus

Joyce’s work shows for M is C-scheme, ∃ sheaf of C-vector space S st: for ∀U ⊂ M open and
U ⊂ V closed for a smooth scheme V , there is an exact sequence

0→ S|U → OV /I2
dDR−−−→ Ω1

V /IΩ1
V (0.21)

ie, S|U � ker(OV /I2
dDR−−−→ Ω1

V /IΩ1
V ).

eg:
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A typical example is the local model: f : V → C andU := crit(f ) = {d f = 0 }, I := Im(TV
df
−−→

OV ).
De�nition 0.3.1. A d-critical locus is a pair (M, s) and s ∈ S st: ∀ x ∈ M , ∃ x ∈ U ⊂ M and
a closed embedding into smooth V with

U = {d f = 0} // V

f
��

C

and s |U = f̃

The most interesting example (at least for emumerative geometer) of such structure are the
moduli of stable objects over CY 3-fold:
Theorem 0.3.2. (D.Joyce)
X := CY-3 fold, then the moduli stackMs

σ (v) admits a canonical d-critical locus structure.

Proof. �

Orientation for d-critical locus

in 0.50, D.Joyce shows
Theorem 0.3.3. (D.Joyce)
(M, s):= d-critical locus over k andMr ed . Then there is a natural line bundle KM,s overMr ed st:

KM,s |U r ed � K ⊗2U |U r ed

for locallyU = crit(f : V → C).

Proof. �

So a square root can be de�ned and it is called a Orientation for (M, s).
De�nition 0.3.4. (Y.Toda)
Two critical locusM+M− (schemes or algebraic space) with diagram

M+

π+
  

M−

π−
~~

A

(0.22)

is called d-critical �op at p ∈ A if ∃ x ∈ U ⊂ A open and �op diagram st:

(π±)−1(U )

��

≈ // {dw± = 0}

��

U
closed embdeddinд

// Z

40
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Examples 1.

2. C:= a smooth projective curve of genus д and n > 0,

Sn+д−1(C)

π+ ''

S−n+д−1(C)

π−
ww

Picn+д−1(C)

(0.23)

with π+(D) = O(D), π−(D ′) = ωC (D ′).

then

• h1(L) ≥ 2, d-critical �op.

• h1(L) = 1, d-critical divisor contraction.

• h1(L) = 0, d-critical Mori �bered space.

mΘE (−→m) := [Ext1(E,E)/Aut(E)]
[ Π
iyj

Hom(Vi ,Vj )/Π
i
GL(Vi )] (0.24)

Wall-Crossing for 1-dim stable sheaves:

Coh≤1(X ) := {E ∈ Coh(X ) : dim supp(E) ≤ 1 }

Γ≤1 := H2(X ,Z) ⊕ Z

A(X )C := {B +
√
−1ω ∈ H 2(X ,C) : ω ample} space of complexied

consider
ZB,ω : Γ≤1 → C

(β,n) 7→ −n + (B +
√
−1ω).β

Fact: σB,ω := (ZB,ω ,Coh≤1(X )) ∈ Stab≤1(X ) := Db (Coh≤1(X ))

MX (β):= moduli of pure 1-dim stable E ∈ coh(X ) with χ (E) = 1 and [E] = β .
Theorem 0.3.5. The wall-crossing diagram

Mσ +(v)

π+ $$

Mσ −(v)

π−
zz

Mσ (v)

(0.25)
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is a d-critical �op.

Proof. �

Wall-crossing for stable pairs moduli space
Lemma 0.3.6.

Proof. �

D/K conjecture

42



(version November 12, 2020) 43

0.3.2 Talk 1: Analytical methods in complex algebraic geometry

Di�erential geometry of Holomorphic bundles:

X := kahler manifold of dim = n with E → X holomorphic rank = r vector bundle. Let

h : E × E → C

be hermitian metric on E, ie, h is a �berwise an hermitian inner product over each �ber Ex � Cr .
choose a good cover{Uα } for X (always exists for compact smooth manifold).

Singular Hermitian metric: For line bundle L→ X ,
De�nition 0.3.7. L→ X is called

1. ample if

2. nef if

3. big if

4. Psudo-e�ective if

Relations to algebraic setting

Analytical proof of Nadel vanishing
Theorem 0.3.8. Bochner formula

[
√
−1Θ,Λ] = ∆∂E − ∆∂E

Proof. �

Lemma 0.3.9. (L.Holmander)
(E,h) → X is a holomorphic vector bundle over a compact kahler manifold (X ,ω). Assume
A := [

√
−1Θ,Λ] is positive on Ωp,q(E),q ≥ 1, then for any д ∈ L2(X ,Ωp,q(E)) with ∂Eд =

0,
∫
X (A

−1д,д) < ∞, there is a f ∈ Ωp,q−1(E)) st:

∂E f = д, ‖ f ‖2≤
∫
X
(A−1д,д)

Proof. �

43



(version November 12, 2020) 44

0.3.3 Talk 2:
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0.4 Topic 4: Complex Geometry and Birational geometry

0.4.1 Prof.Mihnea Popa ’s Distinguished lectures

Hodge ideals and applications

Goal of the lecture:

X ∈ sm.Var (C) and D ⊂ X reduced hypersurface. To associate a sequence of ideal sheaves
{Ik (D)}k ∈Z which have to do with

• singularities of (X ,D)

• Hodge theory of X − D.

• Local/global properties and applications.

set DX := sheaves of di�erential operators

∂a1x1 ...∂
an
xn := ∂

a1

∂xa11
◦ ... ◦ ∂

an

∂xan1

for local coordinate (x1, ...,xn).

DX has natural �ltration F •DX by the order of the di�erential operators, ie,

F lDX := {∂ax : |a | ≤ l}

De�nition 0.4.1. A DX -moduleM on X is a quai-coherent sheaf on X which is a module over
DX

Remark: equivalently, there is integrable connection on M

∇ :M →M ⊗ ΩX

st: ∇2 = 0.

such a connection will also give representation for π1(X ) → End(Mx ) via monodrmy

Examples;

1. OX (∗D) := ∪
k
OX (kD)

2. E → X a holomorphic vector bundle.

De�nition 0.4.2. one de�ne the �ltration od ideal sheaves I•(D) by

R0 f∗C
• = ωX ((k + 1)D) ⊗ DX (0.26)
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one can show that

a independent of choice of log resolutions.

b contains Saito’s Hodge �ltration.
Theorem 0.4.3.

Proof. �

Examples;

1.X surface

2.x ∈ D ordinary singular point withmulx (D) =m, ie, projective tangent cone at x is smooth ,
a typical example is cone vertex of deд =m hypersurface in Pn−1. then

• I0(D) = mm−n
x

• Ik (D) = OX i� k ≤ n
m − 1

•

Basic Questions

1. when Ik (D) = OX ?

2. Given x ∈ D, when Ik (D)x ⊂ mq
x for some q > 0 ?

Facts and some an

• I0(D) = O(x) i� (X ,D) is lc.

• Take a log resolution for (X ,D)
f : Y → X

with E = (f ∗D)r ed , then

I0(D) = f∗(OY (KY /X + E − f ∗D)) (0.27)

De�nition 0.4.4. (X ,D) is k-lc if Ik (D) = OX , ie,

I0(D) = I1(D) = ... = Ik (D) = OX

Theorem 0.4.5. (M.Saito, see 0.50)
(X ,D) is k-lc i�

αf − 1 ≥ k

Proof. �

Theorem 0.4.6.
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Proof. �

(M, F ) is �ltered DX -module, DeRham complex

DR(M) := {M ∇−→M ⊗ Ω1
X
∇−→M ⊗ Ω2

X → ...}

FkDR(M) := {FkM
∇−→ Fk+1M ⊗ Ω1

X
∇−→ Fk+2M ⊗ Ω2

X → ...}

дr FkM := FkM/Fk−1M

Theorem 0.4.7. Saito vanishing
X Projective and (M, F ) is �ltered DX -module, L is ample line bundle, then

Hi (X ,дr FkM ⊗ L) = 0, ∀ i > 0 (0.28)

Proof. �

Examples;

1. OX with trivial �ltration

FkOX =
{
OX if k ≥ 0,
0 if k < 0,

then
DR(OX ) = {OX

∇−→ Ω1
X
∇−→ Ω2

X → ...}

дr F−kDR(OX ) = Ωk
X [n − k]

In the case, Saito vanishing⇔ Kodaira-Nakano vanishing :

Hp (X ,Ωq
X ⊗ L) = 0, p + q > n (0.29)

for L ample.
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0.4.2 Prof.Mircea Mustata’s Distinguished lectures

Hodge ideals and singularities
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0.4.3 Prof.Junyan Cao’s Distinguished lectures

Singular hermitian metrics and some applications in complex geometry

1. Introduction: Iitaka conjecture

X smooth projective variety /C. The Kodiara dimension of X is de�ned to be

K(X ) :=

K(X ) is a basic birational invariant of X . More generally, for a pesudo-e�ective divisor D ∈
E f f (X ), one de�nes its Kodiara-Iitaka dimension

Iitaka Conjecture Cm,n f : Xm → Yn �bration (here, surjective and connected �ber) of two
smooth projective varieties and F is general �ber, then

K(X ) ≥ K(Y ) + K(F )

The known result so far:

• Kawamata, Kollar

• Y ia Abelian variety by Paun-Cao.

• dimY ≤ 2 by Cao.

Basic tool: Positivity of f∗(ωX /Y )

2. SHM on holomorphic bundles

Hr := {A = (ai j )r×r : ai j ∈ C,A = A∗,A > 0} space of Hermitian matrix.

E
π−→ X complex vector bundle with good cover X = ∪

α
Uα and with trivialization {ψα }

Uα × Cr

''

ψα
// E |Uα = π−1Uα

π
��

Uα

A Singular Hermitian metric on E is a function h : X → H r st: 0 < det(h) < ∞ a.e. on X

In particular, when h is C∞, this is the usual smooth metric. when h is holomorphic, then
there is unique Chern connection on E (just as Levi-Civita connection is unique in Riemannian
geometry w.r.t a given Riemannian metric)
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Fact: The curvature current of h on E is given by
√
−1Θh =

√
−1 ∂(h−1∂h) ∈ (Ω1,1(E))∗ = (Γ(End(E) ⊗ Ω1,1))∗

De�nition 0.4.8. (Gri�th) (E,h) is called Gri�th semi-positive (GSP) if for ∀ x ∈ X , v ∈
T 1,0X , e ∈ Ex ,

(
√
−1Θh(v,v)e, e), )h > 0

where (, )h is the hermitian metric induced by h.

Remark:

1.

De�nition 0.4.9. (Viewheg) ε ∈ Coh(X ) is called weak positive (WP) w.r.t A ∈ Amp(X ) if for
∀m ∈ N, ∃ k := k(m,X ) ∈ N st:

H 0(X , (Symmk (ε))∨∨ ⊗ Ak )� ((Symmk (ε))∨∨ ⊗ Ak )x

for generic x ∈ X .
Theorem 0.4.10. (Viewheg)
f : X → Y �bration of two smooth projective varieties, then f∗((ωX /Y )m) is WP

Proof. �
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0.4.4 Prof.Dabaree’s Distinguished lectures

Hyperkahler varieties
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0.4.5 Prof.Junk Huang’s Distinguished lectures

Minimal

1. Motivation: Deformation of Grassmanian

Gr (p,q) := {L ⊂ Cp+q : dimL = p}.

By R.Bott, H 1(Gr (p,q),TGr (p,q)) = 0, then Gr (p,q) is locally rigid, ie, for any smooth family
X → B with Xb � Gr (p,q) for some b ∈ B, then Xt � Gr (p,q) for general t ∈ B.

52



(version November 12, 2020) 53

0.4.6 Talk 1: Introduction to multiple ideal sheaves

X ∈ sm.Var (C), D ≥ 0 Q-divisor and a ⊂ OX , c ∈ Q>0. multiple ideal sheaves J (D), J (ac )
measure the "singularity" of D or a. The pholo is D1 more singular than D2, then J (D1) ⊂ J (D2)

Analytical construction

Assume local equation for Di is fi and D =
∑
aiDi , then

J (D) := {h ∈ OX : |h |2∑ | f |2ai ∈ L1local } (0.30)

J (ac ) := {h ∈ OX : |h |2
(∑ | fi |2)c ∈ L1local ∀ f1, ..., fr дenerator o f a} (0.31)

Algebraic construction

Take log resolution µ : Y → X of pairs (X ,D) or (X , a), ie,

• Y is a smooth variety.

• µ is proper birational morphism.

• Ex(µ) + µ∗D is snc or Ex(µ) + F is snc for

aOY = OY (−F )

By Hioranaka’s resolution of singularities, the log resolution always exists. Then one de�nes

J (D) := µ∗OY (KX /Y − bµ∗Dc) (0.32)

J (ac ) := µ∗OY (KX /Y − bcF c) (0.33)

Proposition 0.4.11. 1. The de�nitions are independent of choice of log resolutions.

2. J (D) (J (ac )) ⊂ OX is idea sheaf whose

Proof. 1. Key fact: any 2 log resolution can be dominanted by another one, ie,

Y3

��

// Y2

��

Y1 // X

�
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Invariants from multiple ideal sheaves
De�nition 0.4.12. pairs (X ,D) is klt if J (D) = OX
lc if J ((1 − ϵ)D) = OX for 0 < ϵ < 1.

Note that J (cD) is trivial for c � 1 and nontrivial for c � 1. Then one can de�ne log canonical
throshed via multiple ideal sheaves

lctx (D) := inf{c : J (cD)x ⊂ mx }

Examples

1. a =< x l11 , ...,x
ln
n >⊂ C[x1, ...xn], then at origin 0 ∈ Cn

lct0(a) =
∑ 1

lj

2.
Theorem 0.4.13. M.Mastata 2002

lct(a) = dimX − sup dimArcm(a
m + 1

Proof. �

Vanishing results
Theorem 0.4.14. Nadeal vanishing
Assume D ≥ 0 Q-divisor, then

1. Riµ∗OY (KX /Y − bµ∗Dc) for any i > 0 and log resolution µ : Y → X ,

2. If X is projective and L − D nef and big, then

H i (X ,OX (KX + L) ⊗ J (D)) = 0, i > 0

Proof. �

Subadditivity
Theorem 0.4.15.

J (D1 + D2) ≤ J (D1) · J (D2)
J (X , ac · bd )) ≤ J (X , ac ) · J (X , bd )

(0.34)

Proof. �

Asymtopic construction
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Proposition 0.4.16.

Proof. �

Mumford regularity theorem
De�nition 0.4.17. Let B → X be a ample and BPF line bundle and F ∈ Coh(X ) is called
m−reularity w.r.t to B if

H i (X ,O((m − i)B) ⊗ F) = 0, ∀ i > 0

Proposition 0.4.18. (D.Mumford)

Proof. �

J.Kollar’s theorem on singularities of PPAV (A,Θ)
Theorem 0.4.19. (J.Kollar)
Let (A,Θ) be a PPAV, then (A,Θ) is lc.

Proof. Sketch: proof by contradication via multiple ideal sheaves.

∃ ϵ ∈ (0, 1) st:J ((1 − ϵ)Θ) ⊂ OA. Then set Z := zeros(J ((1 − ϵ)Θ)) ⊂ Θ �

Age and Siu’s theorem
Theorem 0.4.20. (J.Kollar)
L→ X ample line bundle over smooth projective bundle and for any irreducible subvariety Z ⊂ X ,
LdimZ .Z

Proof. �

Siu’s theorem on invariance of plurigenra

Masuta ’s big thorem
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0.4.7 Talk2: Introduction to Bridgeland stability condition

.

D := triangled category.
De�nition 0.4.21. A t-structure for D is a pair (D≥1,D<0) stïĳŽ

The heart A of the t-structure (D≥≥1,D<0) is de�ned

A := D≥1 ∩ D<0

The basic also motivated example to keep in mind is

D := Db (X ),X ∈ sm.proj .var (C)

D≥1 := {E• ∈ Db (X ) : H i (E•) = 0, ∀i ≥ 1}

D<0 := {E• ∈ Db (X ) : H i (E•) = 0, ∀i < 0}

In this case, the heart is just Coh(X ) = D≥1 ∩ D<0
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0.4.8 Talk3: The image of period map of IHS 4-fold of K3[2] type

Theorem 0.4.22.

Proof. �
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0.4.9 Talk 4: Dual complex of Fano variety and

.

1. Vanishing theorem in char > 0.
Theorem 0.4.23.

Proof. �

De�nition 0.4.24.

2. Dual complex
De�nition 0.4.25.
Theorem 0.4.26. (de Fernex-Kollar-Xu)
(X ,∆) is lc and (Y ,∆Y ) → (X ,∆) is dlt blowup, then the dual complex D(∆=1Y ) is independent of
the choice of dlt blowup up to homeomorphism.

Proof. �
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0.4.10 Talk 5: Sehardri constant

De�nition 0.4.27.
Theorem 0.4.28.

Proof. �
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0.4.11 Talk 6: construction of Non-kahler CY 3-fold

Problem: How many topological types of CY 3-folds ?

eg: M.Freedman construct
Theorem 0.4.29. ∀a ∈ Z>0, ∃ Xa Non-kahler CY 3-fold with

b2(Xa) = a + 3

Proof. �

Deformation of SNC CY n-folds
Theorem 0.4.30. (Kawamata-N)
X := Xi SNC CY n-fold st:

• Hn−1(X ,OX ) = 0, Hn−2(Xi ,OXi ) = 0.

• X is d-semistable, ie,

(⊗ Ii
Ii ID
)∨ = OD

Then ∃ ϕ : X → ∆ st:

1. X is smooth.

2. Xt is CY n-fold for t , 0.

Proof. �
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0.4.12 Talk : Nef −KX and RC fibration

De�nition 0.4.31.
Theorem 0.4.32. f : X → Y of normal projective varieties with f∗OX = OY and KY is Q-cartier.
Assume Y has canonical singularities and 4 = 4+ − 4− and D is Q-cartier st:

• −(KX + 4+) lc over general point of Y .

• −(KX + 4 + f ∗D is nef.

Then −f ∗(KX + D) + 4− is Pesudo-e�ective.

Proof. �
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0.4.13 Talk: Derived invariant from Albanese map

.

Motivating problems: For X ,Y ∈ sm.proj .Var (C) and D(X ) � D(Y ), then hp,q(X ) = hp,q(Y )
?

Known Results

• h0,q by

•
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0.4.14 Talk : Monodromy and degeneration of K-trivial varieties

.

The motivation is coming from trying to understand the period mapM → D/Γ.
De�nition 0.4.33. Dual complex
Theorem 0.4.34. (Kulikov-)
Let X → 4 be a degeneration of K3 after semi-stable reduction and KX/4 ≡ 0. then the central
�ber X0 is classi�ed

Type X0 Shape Σ nilponent index ν
I smooth point 1
II 002
III 002 sphere S2 3

Proof. �

Theorem 0.4.35. (J.Shah) TFAE

• Monodromy is �nite.

• X0 has canonical singularities.

Proof. In dim = 2, canonical singularities⇔ Du val (ADE, or simple ) singularities. �

Natural one will ask what will happen in high dimension ?

Degeneration of IHSs
Theorem 0.4.36. (Fujino, Hacon-Xu)

Proof. �

Theorem 0.4.37. (Kollar-Laza-Sacca-Voisin)

1. Finite Monodromy.

X → 4 minimal dlt projective degeneration of IHSs, ie, KX ≡ 0, (X,Xt ) dlt ∀ t ∈ 4. then TFAE

1. Finite monodromy on H 2.

2. X0 canonical singular.

3. X0 has a component which is not uniruled.

2. Smooth Filling

X → 4 �nite monodromy degeneration, then

Proof. �
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De�nition 0.4.38. X0 is Cohomologicall insigni�cant singular if for X → 4, the special-
ization map

spk : Hk (X0) → Hk
lim

is isomorphism on I 0,k , Ik,0 of MHS on Hk
lim .

De�nition 0.4.39.

Du Bois
De�nition 0.4.40.
Theorem 0.4.41. (Steenberk, Kollar-Kovacs)

slc ⇒ Du Bois⇒ Cohomologicall insigni�cant singular

Proof. �

Degeneration of CY 3-folds
Theorem 0.4.42.

Proof. �
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0.4.15 Talk: Positivity of CM line bundle

.

1. K-stability

In the talk, X is Fano⇔ klt & −KX ample.

For q ∈ Z>0, D is a q-basis type e�ective divisor if

D =

∑{si = 0}
h0(−qKX )

∼Q −KX

for H 0(x ,−qKX ) = span{s1, ..., sh0(−qKX )}.

Lct(X , Γ) := sup{t : (X , tΓ) is lc }

δq(X ) := inf{lct(D) : D ∈ | − qKX | q − basis }

Theorem 0.4.43. (Fujino)

δ (X ) := lim supδq(X ) = lim
q→∞

δq(X ) (0.35)

is well-de�ned.

Proof. �

2. CM line bundle

f : X → T a Fano family, ie,

• �at with normal �ber.

• −KX /T is Q-cartier and ample.

In 1990s, de�ned
λf := f∗((−KX /T )n+q)

Theorem 0.4.44. (Knudson-Mumford)

Proof. �

3. Moduli conjecture (Y.Odaka,Tian, Donaldson)

For n ∈ Z>0 v ∈ Q>0, one expects

1. ∃ Moduli stackMKss
n,v

2. ∃ algebraic space MK−ss
n,v which is a good proper moduli space for .
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3. CM bundle λ gives polarization for MK−ss
n,v .
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0.4.16 Talk: Openness of uniform K-stabilities

Theorem 0.4.45. X smooth Fano manifold, then

1. [CDS,Tian,Berman],

X is K-polystable i� X admits KE.

2. [Berman − Bouksom − Jonsson],

X is uniform K-stable i� X admits KE and #Aut(X ) < ∞.

Proof. �

Theorem 0.4.46. (Blum-Liu, 2018)
X π−→ T is a Q-Fano family, then

1. {t ∈ T : Xt uni f orm K − stable} ⊂ T is zariski open

2. {t ∈ T : Xt K − semistable} ⊂ T is a countable intersection of zariski open subsets.

Proof. �

Remark:

Examples:

1. all smooth quadrics Qn ⊂ Pn+1 are K-polystable.

2. dimX = 2, for smooth case, By Tian, the only obstruction to KE is Futaki invariant:

• K-polystable: P2, P1 × P1, Bl3 ptsP2.

• K-stable: 1 ≤ (−KX )2 ≤ 5.

• K-unstable: Bl1 ptP2, Bl2 ptsP2

3. By K.Fujita 2016, smooth hypersurface Xn+1 ⊂ Pn+1 is K-stable for N ≥ 3

4. By Odaka,

By Liu-Xu, X3 ⊂ P4 is K-stable (s.s) i� GIT stable (s.s).

De�nition 0.4.47. D ∼Q −KX ism-basis type divisor if

D =
∑
i

{si = 0}
m · Nm

where H 0(X ,−mKX ) = span{s1, ..., sNm }
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Theorem 0.4.48. (Blum-Liu, 2018)
X π−→ T is a Q-Fano family, then the function

t ∈ T 7→ δ (Xt )

is lower semi-continuous, ie,

Proof. �

By Blum-Jasson 2017,
lct(X ,D) = inf

E div/X
{ AX (E)
ordE (D)

}

where AX (E) is log discrepency for f : Y → X and E ⊂ Y is a prime divisor. Thus,

δm(X ) = inf
D

inf
E div/X

{ AX (E)
ordE (D)

}

= inf
E div/X

{ AX (E)
sup
D
{ordE (D)}

}
(0.36)

Each E div/X induces a �ltration on Rm := H 0(X ,−mKX ):

FλE := {s ∈ Rm : ordE (s) ≥ λ}

then
Rm = F0

E ⊇ F1
E ....F

mTm
E = 0

where Tm := 1
m max{ordE (s) : s ∈ Rm}.

de�ne
sm(E) := sup

D
{ordE (D)} =

1
mNm

∑
j

dimF jE

Proposition 0.4.49.

lim
m→∞

sm(E) =
1

Vol(−KX )

∫ ∞

0
Vol(−KX − tE)dt

Proof. �

idea of proof

δ̂m(X ) := inf
F
{ lct(X , b.(F))

sm(F)
}
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0.4.17 Talk: Birational rigidity

De�nition 0.4.50. f : Y → Z is called a Mori �ber space (MFS) if

1. Y is Q-factorial terminal singular.

2. −KY is f -ample.

3. ρ(Y/Z ) = 1.

eg: A Pr bundle.

X := Fano with ρ(X ) = 1
De�nition 0.4.51. X is called Birational superrigidity (BSR) if X/pt is MFS and for any

Q: Is there a nice moduli for BSR/BR Fanos ?

For a family of Fano varieties X π−→ T , Is

BSR(X π−→ T ) := {t ∈ T : Xt BSR}

constructible ? open ?
Theorem 0.4.52. (Stibitz-zhang)
For two families of Fano varieties

X

��

Y

��

C

st: X − X0 � Y − Y0 and X0, Y0 BSR, then X � Y

Counterexample for openness of BSR:

X := {y2 = f (x0, ..,xn+1), ty = д(x0, ..,xn+1)} ⊂ P(1n+2,m) × C

For t , 0,
Xt = {д2 − t2 f = 0 } ⊂ Pn+1
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0.5 Topic 5: Geometric Langlands Program

0.5.1 Prof.Zhiwei Yun’s Distinguished lectures

An Introduction to the moduli of Shtukas

1. De�nition of Shukas and examples

Story over number �elds F/Q comes from R.Langlands:

To establish the connection, People

X := smooth projective geometrically connected curve /k := Fq .

F := k(X )
De�nition 0.5.1. S ∈ sch(k), D ⊂ X × S relative divisor. A shtukas over S with legs in D consists
of pair (ε, ρ) satisfying

1. ε → X × S is a vector bundle.

2. ρ : ε |X×S−D
'−→ ε :τ = (id × FrS )∗ε |X×S−D

one can consider the category of Shtukas Sht(S,D):
Theorem 0.5.2. Assume D = ϕ and S connected. Then for any (ε, ρ) ∈ Sht(S,D), there is an
Etale covering f : S ′→ S st:

f ∗() (0.37)

Proof. �

Baby version of theorem:
Lemma 0.5.3.

Proof. �

there is a natural 1-1 correspondence

{P → C : G − bundle}
w

↔ [G(K) \G(A)/G(O)]

Given a principle G-bundle P → C ,
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0.6 Topic 6: Rationality Problems

0.6.1 Prof.Burt Totaro ’s Distinguished lectures

Algebraic cycles and birational geometry

X ∈ Var (k) is called rational if .

eg:

1. {x2 + y2 = 1} ⊂ A2
k is rational for k = C,R. The birational map is given by

A1 → circle

t 7→ ( 2t
1 + t2 ,

1 − t2
1 + t2 )

2. Nodal cubic curve,

3. For any irreducible quadric hypersurface X ⊂ Pn+1k , X is rational i� X (k) , ϕ

4. smooth cubic surfaces over k = k are rational.

The lectures will discuss the work of C.Voinsin,B.Hasset, : Chow groups of 0-cycles can be used
to show many varieties are not rational.
Lemma 0.6.1. A0(X ) is a birational invariant for X ∈ sm.proj .Var (k).

Proof. For char (k) = 0, �

Lemma 0.6.2. (moving lemma for 0- cycle)
X ∈ sm.proj .Var (k) and ϕ , U ⊂ X , then ∀ 0-cycle α on X is rational equivalent to some one on
U .

Proof. It su�cience to show when α ∈ X is closed points. ∃ curve C ⊂ X st: C ∩ U , ϕ
and α ∈ C . so for z ∈ C − U , the line bundle OC (α +mz) is of higher degree for m � 0. so
∃s ∈ H 0(OC (α +mz)) �

Theorem 0.6.3. (Decomposition of diagonal )
X ∈ sm.proj .Var (k). TFAE

1. ∀ E/k , A0(X ) → A0(XE ) is surjective.

2. ∀ E/k , deд : A0(XE ) → Z is isomorpphic.

3. ∃ decomposition in chow A0(X × X ) :

4 = X × α + B (0.38)

where α ∈ A0(X ) is a 0-cycle and B supported on S ×X for some proper closed subset S ⊂ X .
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Proof. (1)⇒ (3): Take E = k(X ) and then A0(X ) → A0(Xk (X )) is surjective

Xk (X )

��

// X

��

spec(k(X )) // spec(k)

(3)⇒ (2): using correspondence 4 acting on A0(X ), one has

4∗β = β = (X × α + B)∗β = deд(β)α + 0 (0.39)

for any 0-cycle β ∈ A0(X ). so deд(β)α = β in A0(X ) where B∗β = 0 is due to moving lemma of
0-cycle.

�

72



(version November 12, 2020) 73

0.6.2 Prof.Lawrence Ein’s Distinguished lectures: Measures of irrationality
of an algebraic variety

De�nition 0.6.4. X ∈ Var (C) with dimX = n,

Irr (X ) := min{d : X d Pn}
Cov .дon(X ) := min{d :}
Conn.дon(X ) := min{d :}

(0.40)

Remark:

• Irr (X ) = 1 i� X rational

• Irr (X ) = min{d : [C(X ) : C(t1, ..., tn)] = d }

• Cov .дon(X ) = 1
Theorem 0.6.5. For a general smooth hypersurface X ⊂ Pn+1 of degree = d ≥,

then
Irr (X ) = d − 1
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0.7 My reading talk on localization techniques in counting
theory

During the student’s learning seminar, I plan to report E.Geber and Rahul.Pandharipande paper
"localization of virtual class" and learn the technique of localization methods in curve counting.

0.7.1 History and Goal

• Bott residue formula:
Let X be a n-dimensional smooth projective algebraic manifold and E → X holomorphic
vector �eld of rank r . v ∈ H 0(X ,TX ) is a holomorphic vector �eld on X . P : Cr×r → C is
invariant polynomial function, ie, P(дAд−1) = P(A), ∀д ∈ GL(r ), eg, det , Trace .∫

X
P(
√
−1
2π Θ) =

∑
v(x )=0

P(Ax )
detAx

) (0.41)

where for a zero x of v , choose a local coordinate (U , z1, ..., zn), one can write v in the
coordinate as

v(z) =
∑

1≤i, j≤n
ai jzi

∂

∂zj

and de�ne
Ax := (ai j )n×n

It’s easy to check that di�erent choices of coordinate result in the conjugation of Ax , so
RHS is well-de�ned.

Proof. idea of proof: �

eg: X := Pn and v =

• Atiyah-Bott-Duistermaat-Hecknan

Let G be a connected Lie group acting X a compact smooth manifold with �xed locus
XG = t

i
Xi , Xi ⊂ XG connected component. Then∫

X
α =

∑
i

∫
Xi

ι∗iα

e(Ni )
(0.42)

where ιi : Xi ↪→ X is natural inclusion and Ni is normal bundle. It also has equivariant
version
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• Localization in counting.
Let X be a smooth DM stack with C∗ y X and XC

∗
= t

i
Xi , ι : XC

∗
↪→ X then

[X ]vir = ι∗(
∑
i

[Xi ]vir

e(Nvir
i )
) (0.43)

where Ni is the virtual normal bundle.

Proof. idea of proof:

�

• Topological vertex:

0.7.2 Main idea of proof

0.7.3 Computation Examples

.

1. Computation of multiple cover contributions.

universal stable map
C

π
��

µ
// Pr

Mд,n(Pr ,d)

::

Theorem 0.7.1. (Farber-Pandharipande)

GWд,d < l1, ..., ln >=

∫
[Mд,n (P1,d )]vir

n
Π
j=1

ev∗jH
lj

=
∑
Γ

1
|AΓ |

∫
M Γ

Π
[n]
λ

e(Nvir
Γ )

(0.44)

Proof. �

Theorem 0.7.2. (Morrison-Aspitoll, Farber-Pandharipande)

∫
Mд (P1,d )

ctop (Rπ∗µ∗N ) =


1
d3 if д = 0,
d
12 if д = 1,
|χ (Mд ) |

= if д > 1,
(0.45)
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Proof. �

2. Toric CY 3-fold.

T y X , the moment map
µT : X → t∗

has image µT (X ) as a polytope.
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0.7.4 Pandeharipande-Pixton’s work on GW /DT correspondence for CI CY
3-fold

This section is based on my reading notes on Pandeharipande-Pixton’s beautiful paper ?? and
the two talks given during the AG program.

1. General conjecture of MNOP on the correspondence:

The (free energy amptitude at д ) reduced GW potential for X

FGW (u,v) :=
∑
д≥0

∑
0,β

Nд,βu
2д−2vβ (0.46)

ZGW (u,v) := exp(FGW (u,v)) = 1 +
∑
0,β

ZGW (u)βvβ (0.47)

where
Nд,β := deд([Mд(X , β)]vir ) =

∫
[Mд (X ,β )]vir

1 ∈ Q

The reduced DT potential is

ZDT (q,v) :=

∑
β,n

Tn,βq
nvβ∑

β,n
Tn,0qn

(0.48)

where Tn,β :=
∫
[In (X ,β )]vir 1 ∈ Z.

By the work of MNOP, Jun Li, K.Behrend, it is known degree 0 DT is

M(−q)χ (X ) = ( 1∑
n≥1
(1 − (−q)n) )

χ (X )

where M(q) := 1∑
n≥1
(1−qn ) is so-called Mcmahon function.

The conjectural relation for GW /DT correspondence is after change of variable q 7→ −e
√
−1u

ZDT (−e
√
−1u ,v) = ZGW (u,v) (0.49)

2. what are known before Pandeharipande-Pixton ?

• GW /DT correspondence holds for Toric CY 3-fold by MNOP via localization techniques,
topological vertex.

• DT theory for local curve (ie, total space of rank 2 bundles over a curve ) by Br - via .

•
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3. Main result of Pandeharipande-Pixton and main idea of the proof
Theorem 0.7.3. (Pandeharipande-Pixton 2017, see ??)
If X ⊂ Pn1 × ... × Pnr is a Fano or CY 3-fold of complete intersection, then

(−q)
dβ
2 ZPT (q,τα1(γ1) · ... · ταl (γl ))β

= (
√
−1u)dβZGW (u,τα1(γ1) · ... · ταl (γl ))β

(0.50)

where dβ :=
∫
β c1 under change of variable q 7→ −e

√
−1u .

Proof. Sketch: The main idea is to use the typical computational techniques: Deformation and
Degeneration.

�

0.7.5 what can we do next ?

Some problem
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