
1 Introduction
K3 surface is introduced by A. Weil 1958, named after three mathemacians Kummer, Kahler, Kodaira and a mountain

K2.

The main goal of the minicourse is to give a sketch of construction of the moduli space

F2l := {(X, L) quasi-polarised K3 of degree 2l}/ ∼ ∼= Γ \ G/K

where G = SO(2, 19) is an orthogonal group , K = SO(2) × SO(19) is a maximal subgroup and Γ ≤ G is an arithmetic
subgroup. Here the homogenous space G/K can be realised as a hermitian symetric domain of Type IV.

The plan for the mini-course will be

1. Lect 1: Overview and introduction for K3 in various subjects, stating the main result for moduli spaces of K3
surfaces and provide some examples.

2. Lect 2: More examples and Basic topological and geometrical properties of K3 surfaces.

3. Lect 3: Hodge theory for K3 and Torelli theorem

4. Lect 4: Cone structure for K3.

5. Lect 5: Moduli problem for K3. The existence of coarse moduli space.

6. Lect 6: The moduli space is a locally symmetric space via period map. Maybe some cycle theory problems will be
mentiond.

A nice reference for the minicourse is Daniel Huybrechts’ book

Lectures on K3 surfaces. Cambridge University Press. 2016

2 Geometry of K3 surfaces
Definition 2.1. A complex K3 surface is a 2-dimensional simply connected compact C surface with ωX

∼= OX .
Or symplectic geometric definition: a 2-dimensional simply connected compact C surface with a nowhere vanishing

holomorphic 2-form σ ∈ H0(X, Ω2
X) such that H0(X, Ω2

X) = Cσ.
More algebraic-geometric definition: A K3 X over k is a smooth projective surface X over k such that

ωX
∼= OX , H1(X, OX) = 0.

Remark 2.2. A deep result of Siu (see [1]) says that a complex K3 surface must be a Kahler surface and so one may
view it as a part of the definition, thus the results in Kahler geometry can be applied to K3 directly, for example, the
Hodge decomposition etc.

Remark 2.3. Symplectic geometric definition can be generalised to higher dimension and the manifold is known as
irreducible holomorphic symplectic manifold. Using Yau’s famous solution of Calabi conjecture, this is equivalnent to the
definition of hyperkahler manifold (M, g, I, J, K).
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Remark 2.4. Symplectic geometric and complex geometric definition are equivalent. A nowhere vanishing holomorphic
2-form σ will induce isomorphism of holomorphic vector bundle

σ : TX → ΩX , via v 7→ σ(v, −).

As X is simply connected, ∧2TX
∼= ∧2ΩX will imply ωX

∼= OX .
On the other hand, ωX = ∧2ΩX

∼= OX will imply

H0(X, Ω2
X) = H0(X, ωX) = H0(X, OX) ∼= C.

For the algebraic definition, if k = C, then the analytic space Xan (under Serre’s GAGA) of an algebraic K3 X/k is
complex K3 surface. While a complex K3 may be not an algebraic K3. See Remark (2.6).

In this minicourse, we mainly deal with the complex algebraic K3 surfaces. So a K3 always means a complex algebraic
K3 surface unless otherwise specified.

Before exploring the examples, let us fix some convention. For smooth projective variety X over C, each Weil divisor
D on X will produce an invertible sheaf OX(D) of rank 1, i.e, a line bundle. We may do not distinguish them in the
mincourse.

The construction of explicit examples of K3 surfaces involves many beautiful geometry, we just list the following

Example 2.5 (Kummer K3s). Let A = C2/Λ be an Abelian variety and

ι : A → A, z + Λ 7→ −z + Λ

be an involution. It is easy to see its fixed locus is given by

Aι := {(z1, z2) | (2z1, 2z2) ∈ Λ}

and the quotient surface A/ι is surface with 16 isolated singular points of type A1 (i.e., locally isomorphic to the germ
x2 + y2 + z2 = 0). Let X → A/ι be the minimal resolution. Alternatively, one can take blowup π : Ã = BlAι → A the
fixed locus Aι and the involution ι will be lifted to ι̃ : Ã → Ã such that π ◦ ι̃ = ι ◦ π. Then X ∼= Ã/ι̃ with the following
diagram

Ã = BlAι A

Ã A

X A/ι

ι̃

π

ι

q

π

Denote the E1, · · · , E16 the exceptional divisor of π and Ci := q(Ei) ⊂ X. The quotient map q : Ã → X is a double
cover brached along the curve C1 + · · · + C16 and q∗(Ci) = 2Ei for 1 ≤ i ≤ 16.

Claim: X is s smooth surface. Note that q is étale outside C1 ⊔ · · · ⊔ C16. Thus, it is sufficent to show X is smooth
at x ∈ Ci for any 1 ≤ i ≤ 16. Indeed, assume q(y) = x, then locally around y ∈ Ã under suitable coordinate (u, v), the
involution ι̃ is of the following form

(u, v) 7→ (−u, v)

where v = 0 the the local equation for the rational curve Ei. Thus, the germ for x is given by Spec((k[u, v])̃ι) =
Spec(k[u2, v]) ∼= A2

k, which is smooth.
By the blowup, we get

K
Ã

= π∗KA +
∑

Ei =
∑

Ei

By the double covering structure, we get

q∗O
Ã

= OX ⊕ OX(−
∑

Ci), K
Ã

= q∗KX +
∑

Ei

These formulas imply ωX
∼= OX . Meanwhile, as ι∗(dzi) = −dzi for i = 1, 2, then

H1(X, OX) ↪→ (H1(Ã, O
Ã

))̃ι∗
= (H1(A, OA))ι∗

= 0
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The above discussion shows that X is a K3, which is called Kummer K3 . Moreover, from the construction, we have

17 ≤ ρ(X) = ρ(A) + 16

and the Neron serveri group NS(X) contains a sublattice ⟨−2⟩⊕16 spanned by the rational curves Ci.
This construction still works in higher dimension Abelian variety A/k with char(k) ̸= 2 and the variety X obtained

in this way is called Kummer variety.

Remark 2.6. In the above example, if we just take A = C2/Λ to be a complex tori (eg, for generic lattice Λ ⊂ C2

so that there is no positive definite Hermitian form H on C2 whose imginary part E takes Z-value on Λ, by Kodaira’s
embedding theorem, such complex surface is not projective), then the surface X we get is just complex K3, not necessary
to be an algebraic K3.

Remark 2.7. Kummer K3 is an very important example in K3 surface. For example, in Šapiro- Šafarevič’s proof of Torelli
theorem of K3, they use the density of period points of kummer K3 to reduce the problem on how to recover a Kummer
surface from its period point. Another important application of this geometric contrction is Mori-Mukai’s theorem on
the existence of rational curves in any ample class H on a K3 surface X. Indeed, they first produce a rational curve on
an explicit Kummer K3 X associated Abelian surface A = E1 × E2 where

E1 = C/(2d + 5)Z +
√

−1Z, E1 = C/(Z +
√

−1Z), with isogeny E1
ϕ−→ E2

whose graph Γϕ ⊂ A will give a rational curve in X. Then they use deformation theory of K3 with a curve to show the
general result.

Example 2.8. (K3s as an anti-canonical section of a Fano 3-fold) Let Y be a smooth projective 3-fold with Pic(Y ) =
Z[−KY ] and X ∈ | − KY | is smooth, then by adjunction formula,

ωX = (ωY ⊗ OY (X))|X = OX .

By taking the cohomology of
0 → OY (−X) → OY → i∗OX → 0

one can see that H1(X, OX) = 0 and thus X is a K3 surfaces. From the classification theory of Fano 3-folds of
Mukai-Mori, there are only finitely many such Fano 3-folds whose explicit construction given Mukai. See the table 1.

ℓ General members in F2ℓ Fano 3-fold Y

2 surface in |OY (4)| P3

3 surface in |OQ(3)| quadratic 3-fold Q ⊂ P4

4 surface in |OY (2)| Y = Q1 ∩ Q2 ⊂ P5

Tabel 1: Mukai Model for (X, L)

One of the application of this geometric construction is that one can show the unirationality of moduli spaces of
quasi-polarised K3 surfaces in these cases.

Example 2.9. (K3s from covering construction) Let Y be a del pezzo surface or F4 and C ∈ | − 2KY | be a smooth
curve. Consider the double cover

ϕ : X → Y

branched along the curve C. Huiwitz formula implies ωX = ϕ∗(ωY ⊗ OY ( 1
2 C)) = OX and as branched locus has real

dimension ≥ 2, then π1(X) = π1(Y ) = 1. Thus X is a K3. This covering construction will produce an involution
τ : X → X by exchanging the two sheets. Such involution is called anisymplectic involution, i.e, τ∗σ = −σ. The K3
surfaces with anisymplectic involution can be classified according to their Neron-Serveri group NS(X).

Remark 2.10. The above two examples of K3 are related to Fano geometry. Especially, the moduli spaces of such K3s
are related to moduli spaces of K-stable Fano objects.
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