
0.1 Basic invariants of K3

We will introduce basic invariants for algebraic surfaces, which are very useful. Let’s recall some very useful tools in
complex geometry and algebraic geometry.

Theorem 0.1 (Hirebruch-Riemann-Roch formula). Let X be a smooth projective surface and E is a complex vector
bundle (or coherent sheaf) on X, then

χ(X, E) = h0(E) − h1(E) + h2(E) =
∫

X

ch(E)td(TX) (1)

where hi(E) := dimC Hi(X, E) is dimension of i-th Doeubleat (or sheaf cohomology) cohomology space In particular,
for line bundle L (or a divisor D) on a K3 surface X, we have

χ(X, L) = 1
2L2 +

∫
X

td2 = 1
2L2 + c2

1 + c2

12 = 1
2L2 + 2

Theorem 0.2 (Serre duality). Let E be a vector bundle on a smooth projective surface X, then there is isomorphism of
C-vector spaces

Hi(X, E) ∼= H2−i(X, E∗ ⊗ ωX)

for any 0 ≤ i ≤ 2.

Theorem 0.3 (Kawamata-Viewheg Vanishing theorem). Let L be a big 1 and nef line bundle on a smooth projective
surface X, then

Hi(X, ωX ⊗ L) = 0, i > 0.

Recall the Picard group Pic(X) of algebraic variety is isomorphism classes of line bundles on it and the Neron-Severi
group NS(X) is defined as

NS(X) := im(Pic(X) c1−→ H2(X,Z)).

The rank ρ(X) := rank(Pic(X)) is called the Picard number of X. By taking the cohomology of the exponential
sequence of sheaves

0 → Z → OX → O∗
X → 0, (2)

we have NS(K3) ∼= Pic(K3). Note that Pic(K3) is torsion free. Indeed, the sequence (2) also implies Pic(K3) ↪→
H2(K3,Z) and thus it is sufficient to show H2(X,Z) is torsion free for a K3 X. One way to see this is to use the
sequence (2) to get

0 → H1(X, O∗
X) = Pic(X) c1−→ H2(X,Z) r−→ H2(X, OX) = C

Thus, if H2(X,Z) has a n-torsion class α ̸= 0, then n · r(α) = r(n · α) = r(0) = 0 and thus r(α) = 0 as C has no
torsion. This shows α ∈ im(c1) which can be lifted as a torsion line bundle L with L2 = 0, then Riemann-Roch formula
shows h0(L) + h0(L∨) ≥ 2. We may assume h0(L) ≥ 1, i.e., L is effective. If the section s ̸= 0 ∈ H0(X, L) has zeros,
then so is any power sm ∈ H0(X, Lm) and thus all Lm can not be trival, contradicting that L is torsion.2

Another view point is via covering trick: if H2(X,Z) has a n-torsion element, then there is étale covering Y → X of
degree n > 1. As ωY

∼= OY , then the Noether formula and serre duality h2(Y, OY ) = h0(Y, OY ) implies

h0(Y, OY ) − h1(Y, OY ) + h2(Y, OY ) = 2 − h1(Y, OY ) = χ(Y, OY ) = nχ(X, ωX) = 2n,

which is a contradiction.

Theorem 0.4 (Hodge index theorem for algebraic surfaces). Let X be a smooth projective surface and D a divisor on
X such that D2 > 0. If E is a divisor on X with E.D = 0, then E2 ≤ 0 and E2 = 0 if and only if E ≡ 0.

Now we apply the above tools to show

Proposition 0.5 (Basic invariants of a K3). Let X be a complex K3, then

1. H1(X,Z) = H3(X,Z) = 0.

2. the (NS(X), ∪) is a lattice of signature (1, ρ − 1) with ρ ≤ 20.
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1
0 0

1 20 1
0 0 0 0

0 0 1 0 0

.

3. Hodge diamond of X is

Proof. The first assertion can be proved by showing H1(X,Z) torsion free, which can be done via covering trick.
The signature of (NS(X), ∪) is a direct consequence of Hodge index theorem (0.4).
To compute the Hodge diamond, first, from Riemann-Roch formula (1) for OX and Serre duality, we have

h0(OX) − h1(OX) + h2(OX) = 2 = K2
X + c2

12 ,

So c2(X) = etop(X) = 24 = 2b0 − 2b1 + b2 by poncaré duality. As connecteness and simply-connecteness imply
b0 = 1, b1 = 0, we have b2 = 22 at once. Then by the Hodge decomposition

H2(X,C) = H0(X, Ω2
X) ⊕ H1(X, Ω1

X) ⊕ H2(X, OX),

and Hodge symmetry H2(X, OX) ∼= H0(X, Ω2
X) ∼= C, we get 22 = b2 = 2h2,0 + h1,1 = 2 + h1,1.

Remark 0.6. For algebraic K3 surface X over filed k of char(k) = p > 0, it may happen that ρ(X) = rank Pic(X) = 22,
which is called supersingular K3. The main reason is that over C, there is natural Hodge decomposition for H2(X,C)
while in char(k) = p > 0 case, there is no such decomposition for H2

ét(Xk,Qℓ).

Remark 0.7. As TX
∼= ΩX , thus the Hodge diamond of a K3 shows

h0(X, TX) = 0, h1(X, TX) = 20, h2(X, TX) = 0.

By the deformation theory, the 1st order deformation space of complex structure is H1(X, TX) which is 20-dimensional
complex space and the obstruction space to deform the complex structure is H2(X, TX) which is trivial. This calculation
shows the moduli space of complex structures of K3 surface is 20-dimensional. h0(X, TX) = 0 implies the automorphism
group Aut(X) of K3 is 0-dimensional since each ϕ ∈ Aut(X) can be viewed as a subvariety Γϕ ⊂ X × X, whose normal
bundle NΓϕ/X×X

∼= TX , As the deformation space of Γϕ in X × X is just H0(Γϕ, NΓϕ/X×X) ∼= H0(X, TX) = 0, there
is no moduli in Aut(X).

0.2 Hodge theory of K3 surfaces

Proposition 0.8. (H2(X,Z), ∪) is a lattice isomorphic to U3 ⊕
E2

8(−1) where U is hyperbolic lattice, i.e, a free
Z-module of rank 2 and the gram matrix under a basis e, f is of the form(

0 1
1 0

)
and E8 is the definite lattice associated to the diagram

•

• • • • • • •
1L is big means lim

m→∞
h0(Lm)

m2 > 0
2This argument works for K3 over other filed.
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Proof. First, the H2(X,Z) is a free Z-module of rank 22. The cup product ∪ produce a bilinear form on H2(X,Z). As
the second Stiefel-whitney class

w2(X) ≡ c1(X) = 0 mod 2,

then α2 ≡ 0 mod 2 for any α ∈ H2(X,Z), i.e., (H2(X,Z), ∪) is an even lattice Wu’s result. Then by the Hirzebruch’s
signature formula on the middle cohomology of 2n-dimensional real manifold, we have

τ(X) = b+
2 − b−

2 =
∫

X

1
3p1(X) =

∫
X

c2
1 − 2c2

3 = −16

where p1(X) = −c1(TX ⊕ TX) is the 1st Pontrayin class of X as a real 4-dimensional smooth manifold. The Poincaré
duality implies (H2(X,Z), ∪) is a unimodular lattice. Applying the classification theorem for indefinite even lattice, there
is a unique lattice even indefinite lattice U3 ⊕

E2
8(−1) with signature (3, 19). This finishes proof that (H2(X,Z), ∪) ∼=

U3 ⊕
E2

8(−1).

We recall the general Hodge theory in algebraic geometry

Definition 0.9. A (pure) Z-Hodge structure of weight n is a free Z-module V with decomposition

VC = V ⊗Z C = ⊕
p+q=n

V p,q, such that V p,q = V q,p.

Similarly, one can define Q-Hodge structure.

Remark 0.10. Equivalently due to Deligne’s insight, one can define a Q-Hodge structures on a Q-vector space V of
weight n by the representation of Deligne torus h : S(R) → GL(VR) such that h|R∗ = tnId for any t ∈ R∗. Indeed, as
R-algebraic group,

S(R) ∼= C∗ ∼= {
(

a −b
b a

)
|z = a +

√
−1b ∈ C∗}

and the complexication hC : S(C) → GL(VC) for h will induce the action of C∗×C∗ on VC so that there is a decomposition

VC = ⊕
χ

Vχ = ⊕
(p,q)

V p,q

where χ ∈ Hom(S(C),C∗) ∼= Z × Z runs over the character of S(C) and Vχ := {v ∈ VC | λ(v) = χ(λ) · v, λ ∈ S(C)}
is the eigenspace. Under the embedding

R∗ ↪→ S(R) ↪→ S(C), t 7→
(

t 0
0 t

)
, z 7→ (z, z)

h|R∗ = tnId for any t ∈ R∗ implies V p,q = 0 if p + q ̸= 0, this gives weight n Hodge structure on V .
This perspective is related to give the Shimura datum in the definition of Shimura variety.

Remark 0.11. Another equivalent definition is to use a decreasing filtration known as Hodge filtration, that is, a
decreasing filtration F •

F n+1 = {0} ⊂ F n ⊂ · · · ⊂ F 1 ⊂ F 0 = VC

on VC such that
F p ⊕ F n+1−p = VC, 0 ≤ p ≤ n.

Write V p,q := F p ∩ F q, then VC = ⊕
p+q=n

V p,q.
This view point is easy to define the so-called period map via Griffith’s variational Hodge structure theory.

Example 0.12. Let X be an algebraic curve of genus g, then H1(X,Z) has a natural Hodge structure of weight 1 given
by Hodge decomposition

H1(X,C) ∼= H0(X, ωX) ⊕ H1(X, OX) ∼= C2g.

In fact, there is one to one correspondence

{weight 1 Pure Hodge structure} ↔ { complex torus}.

3



Clearly, the Hodge decomposition will produce a weight 2 Hodge structure on H2(X,Z). Let TX := (NS(X))⊥ ⊂
H2(X,Z) be the orthogonal complement of Nero-Serveri group, known as transcendental lattice of a K3. Then TX has
a Hodge structure of weight 2. Moreover,

Proposition 0.13. TX ⊂ H2(X,Z) is the minimal primtive sub Hodge structure of weight 2 such that (T )2,0 = H2,0 ∼=
C.

Proof. Assume there is another such sub-Hodge structure T ′ so that

T ′ ⊂ TX ⊂ H2.

and there is a integral class α ∈ T − T ′. As (T ′)2,0 = T 2,0 = C, thus both T 2,0 ∩ T ′ and T 2,0 ∩ T are isomorphic to Z.
If α ∈ TX ∩ (TX)(2,0) ∼= Z, there is a β ∈ T ′ ∩ (TX)(2,0) ∼= Z such that nβ = α for some n > 1, this gives a torsion
element β ∈ H2/TX . It gives a contradiction since TX is primitive (i.e., H2/TX is torsion free). Then we may assume
α ∈ TX ∩ (TX)(1,1) ⊂ H2 ∩ H1,1. By the Lefschetz (1, 1)-classes theorem, α ∈ N , which contradicts that α ⊥ N .

Theorem 0.14 (Global Torelli). Two complex K3 X and Y are isomorphic if and only there is an Hodge isometry 3

ϕ : H2(X,Z) → H2(Y,Z).

If ϕ preserves Kahler cone, then ϕ = f∗ for some isomorphic f : Y → X.

Proof. We will explain the proof later.

Remark 0.15. The philosophy of Torelli theorem is the Hodge structure of certain cohomology group H∗(X,Z) of a
smooth projective varieties X. The first example of Torelli theorem in history is that of smooth projective curves over
C, whose Hodge structure is of weight 1. In the case of weight ≥ 2, there are counter-examples for Torelli theorem.

Remark 0.16. The Torelli type theorem still holds for K3’s higher dimensional generation —Hyperkahler mainfold, but
it will be modified by replacing isomorphism classes to birational classes. Note that two birational K3 surfaces are indeed
isomorphic.
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3that is, ϕ is a morphism of Hodge structure and preserves the cup product.
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