
1 Moduli spaces via period map
1.1 Period domain of weight 2 polarised Hodge structure (PHS) of K3 type

Definition 1.1. A (Q-) PHS of weight 2 consists of vector space V/Q with symmetric bilinear form

q : V × V → Q

such that

1. (Hodge filtration) A decreasing filtration F •

F 3 = {0} ⊂ F 2 ⊂ F 1 ⊂ F 0 = VC

on VC such that
F p ⊕ F 3−p = VC, 0 ≤ p ≤ 3.

2. (Polarization compatibility) The form ⟨, ⟩ on VC defined by

⟨v, w⟩ := (−1)pqC(v, w), v, w ∈ V p,2−p := F p ∩ F 2−p

is a Hermintian form on VC and positive definite on component V p,2−p.

Or equivalently, Hodge filtration can be replaced by a R linear group representation

h : S(R) → GL(VR)

such that h(t)v = t2v for any v ∈ VR and t ∈ R∗ ⊂ S(R).

We can construct the classifying space of weight 2 PHS as

D := {F ∈ Fl(VC) | qC(v, w) = 0, v ∈ V p,2−p, w ∈ V p′,2−p′ for p ̸= p′, ⟨v, v⟩ > 0} (1)

It is a open (under the Euclidean topology) subset of closed subvariety D̂ of the flag variety Fl(VC). Indeed, these spaces
are homogeneous spaces. Let

GC := {g ∈ GL(VC) | qC(g−, g−) = qC(−, −)}, PC := {g ∈ GL(VC) | g(F •) = F •}

where F • ∈ D̂ is reference point. Then GC acts on D̂ transitively and P is just the stabilizer of F •, thus,

D̂ ∼= G/P.

Let K := P ∩ G, then K ≤ G∞ is a maximal compact subgroup and D ∼= G/K.

Now we are interested in the classifying space D of weight 2 PHS of K3 type, that is, h2,0 = 1. In this situation, the
period domain D can be realised as a Hermitian symmetric domain, that is,

D = {z ∈ PΛC | z2 = 0, z.z > 0}+.

Theorem 1.2 (Baily-Borel). For any arithmetic subgroup Γ ≤ G, the Γ \ D is a quasi-projective variety and there is a
minimal compactification

(Γ \ D)∗ ∼= Proj(R(Γ \ D, λ))

whose boundaries (Γ \ D)∗ − Γ \ D consist of curves and points.
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1.2 Period maps for family of K3

Let π : (X, L) → B be a family of polarised K3, then we have the following data

V := R2π∗C ⊗ OB , ∇ : V → V ⊗ ΩB , Fp := R2π∗Fp.

Denote the relative deRham complex

Ω•
X/B := [OX → Ω1

X/B → Ω2
X/B ],

which is quasi-isomorphic to π−1OT , thus there is isomorphism

R2π∗Ω•
X/B

∼= R2π∗(π−1OB) ∼= R2π∗C ⊗ OB = V

Using the filtration F• on Ω•
X/B defined by Fp := τ≥pΩ•

X/B , we get a filtration of holomorphic subbundles

Fp := im(R2π∗Fp → V)

of V. Following Katz-Oda, using short exact sequence

0 → Ω•
X/B [−1] ∧ π∗Ω1

B → Ω•
X/(π∗Ω2

B ∧ Ω•
X/B) → Ω•

X → 0

and taking Rπ∗, there is morphism known as Gauss-Manin connection

V = Rπ2
∗Ω•

X/B
∇−→ Rπ3

∗(Ω•
X/B [−1] ⊗ π∗Ω1

B) = V ⊗ Ω1
B

satisfying ∇2 = 0.
These data are geometric realizations of so-called variational Hodge structure. We are going to define period map

more generally for abstract VHS. Let’s recall the variational polarised Hodge structure of weight 2 over T consists of
(V, ∇ : V → V ⊗ ΩB ,F•, Q)

• V is a holomorphic vector bundle over T such that its sheaf of sections are V ⊗Z OB for a Z-coefficient local system
V.

• ∇ : V → V ⊗ ΩB is a flat connection, i.e., it satisfies Leibnitz rule and ∇2 = 0.

• There is a holomorphic subbundle filtration F2 ⊂ F1 ⊂ F0 = V satisfying Griffith transverlity

∇(Fp) ⊂ Fp−1 ⊗ ΩB

for each p where Fp is the sheaf of hololomorphic sections of Fp.

• Q : V ⊗ V → Z is flat so that (Vb,F•
b , Qb) is a PHS of weight 2 for any b ∈ B.

We may assume T is connected and 0 ∈ T . Given a VPHS of K3 type (V, ∇,F•, Q), there is a map

p : T → Γ \ D

where Γ := im(ρ : π1(T, 0) → GL(V0))) is the monodromy group associated to (V, ∇,F•, Q). Indeed, for any path
α : [0, 1] → T with α(0) = and α(1) =, the parall transport along α w.r.t ∇ will define a C-isomorphism

α∗ : Vt → V0

Thus, one can get a map
t 7→ α∗((Vt)2,0) (2)

For another path β : [0, 1] → T which gives another C-isomorphism β∗ : Vt → V0, one has 1

ρ(β ◦ α−1) = β∗ ◦ (α∗)−1 : V0 → V0

That is to say, the map
p : T → Γ \ D, t 7→ α∗((Vt)2,0) mod Γ (3)

is well-defined.
1α−1 means the the same path as α but with opposite direction, so β ◦ α−1 is a loop around 0 ∈ T .
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Theorem 1.3. The period map p is holomorphic.

Recall we have calculated deformation theory for complex structure on a given K3 X. As H0(X, TX) = 0 =
H2(X, TX), then we have Kuranishi space B = Def(X) 2 with pointed family

(X, X) π−→ (B, 0) (4)

such that T0B = H1(X, TX) ∼= C20.

Theorem 1.4 (Local Torelli). The period map of the above families p : B → D ⊂ PH2(X,C) is a local isomorphism.

Proof. As p is a holomorphic map of two smooth complex manifold, It is sufficient to show the tangent map of the
holomorphic map is bijective. Note that the tangent map of this local period map is just the composition of Kodaira-
Spencer map of the family (4) and contraction with the nowhere vanishing σ

T0B
ks−→ H1(X, TX) σ−→ T[H2,0(X)]D = Hom(H2,0(X), H1(X, ΩX)) (5)

Recall ks is just obtained by taking the cohomology of the short exact sequence

0 → TX → TX|X → T0B → 0

As T0B = H1(X, TX) and in this case ks is isomorphism.

Now the global Torelli theorem for polarised K3 surfaces says the global period map

p : F2l → Γ2l \ D2l

is a bijective. This can be deduced from the global Torelli theorem for complex K3, which we are going to give a proof.

1.3 Global Torelli theorem for complex K3

Now we turn to explain the proof of global Torelli theorem for complex K3, which the proof can be generalised to give
a proof of Verbisky’s global Torelli theorem for HK. To do so, we need to define the moduli space of marked complex K3
surface,

N := {(X, ϕ : H2(X,Z) ∼−→)Λ)}/ ∼

where Λ = U⊕3 ⊕ E2
8 . Then we have period map

p : N → DΛ = {z ∈ PΛC | z2 = 0, z.z > 0} (6)

Remark 1.5. One may compare this construction with the construction of moduli space Mg of curves of genus g via
Teichmuller space

Tg := {(X, ϕ : X
diffem−−−−→ Σg)}/ ∼

surjectivity of period map via twistor line

The twistor line builds on the hyperkahler structure (I, J, K : TRX ⊗ C → TRX ⊗ C) of K3 X. Let

M = X × S2 = X × P1 → S2 = P1

be the natural projection with fiber given by the complex structure

It := a · I + b · J + c · K, t = (a, b, c) ∈ S2 ⊂ R3 with a2 + b2 + c2 = 1.

The map M → P1 is called twistor family associated to hyperkahler structure (I, J, K).

Definition 1.6. Let W ⊂ ΛR be a 3-dimensional positive vector space (i.e., ⟨, ⟩|W > 0).
2B can be taken to be a small disk in H1(X, TX) ∼= C20
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1. the curve 3 lW := PWC ∩ DΛ ⊂ PWC = P2 is twistor line associated to W .

2. the twistor line lW is called generic twistor line (GTL) if w⊥ ∩ Λ = {0} for any w ∈ W .

We say two points z, z′ ∈ DΛ are equivalent if there is a finitely many generic twistor lines lW1 , · · · , lWn and a
sequence of points z0, z1, · · · , zn such that

z0 = z, zn = z′, zi ∈ lWi
∩ lWi+1 .

Proposition 1.7. Any two points z, z′ ∈ DΛ are equivalent.

Proof. First, we claim that the set
Σz := {z′ ∈ D| z′ ∼ z}

is open for any z ∈ DΛ. Assume Pz = ⟨a, b⟩ 4 under isomorphism D ∼= Gr+(2, ΛR). For any small pertubation z′ of z
under Euclidean topology, the set

{c ∈ ΛR | ⟨a, b, c⟩, ⟨a, b′, c⟩ and ⟨a; , b; , c⟩ are positive 3-dimensional space in ΛR} ⊂ ΛR

is open where P ′
z = ⟨a′, b′⟩. Thus, we can choose a suitable c ∈ ΛR such that there are three generic twistor lines

l⟨a,b,c⟩, l⟨a,b′,c⟩ and l⟨a′,b′,c⟩ so that

The claim will implies Σz ⊂ D is both open and closed. As D is connected, then Σz = D.

A very bad thing is that N is not Hausdorff. A teicnique introduced in [1] is the Hausdorff reduction of N . That is,
N = N/ ∼ where x ∼ y if x and y are inseparable points. The very important property for the Hausdorff reduction is

Proposition 1.8. The period map p : N → D is uniquely factored through the natural quotient map N → N

N D

N

p

p

such that p([(X, ϕ)]) = p([(X ′, ϕ′)]) if and only if [(X, ϕ)], [(X ′, ϕ′)] ∈ N are two inseparable points.

Proof. see [1].

Remark 1.9. Moreover, p([(X, ϕ)]) = p([(X ′, ϕ′)]) will imply X is birational to X ′. The argument is due to Huybrechts.
As [(X, ϕ)], [(X ′, ϕ′)] ∈ N are two inseparable points, there are two sequence of marked complex K3s (Xi, ϕi) and
(X ′

i, ϕ′
i) with

lim
i→∞

(Xi, ϕi) = (X, ϕ), lim
i→∞

(Xi, ϕi) = (X, ϕ), Xi
fi isom−−−−−→ X ′

i.

By a result of Bishop, one get the limit cycle

Γ∞ = Z
∑

i

Yi ⊂ X × X ′

of graph Γfi ⊂ Xi × X ′
i of fi, where Z is a correspondence from a birational map between X and X ′ and Yi does not

dominant X or X ′.
As any birational map of two smooth projective surface over C with canonical divisors nef is indeed an isomorphism,

so X ∼= X ′. 5

3This is a smooth plane conic.
4Here ⟨a, b⟩ means the R-vector space spanned by the vectors a, b ∈ ΛR.
5Note that this fails for higher dimensions, say, there exists Mukai flop between HK of dimension ≥ 4.
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Proposition 1.10 (Lifting of generic twistor line). For any (X, ϕ) and a generic twistor line p([(X, ϕ)]) ∈ lW , there is a
unique morphism lW → N such that

lW

N DΛ
p

where N = N/ ∼ is the Hausdorff reduction of N .

Proof. The idea is to lift GTL lW as a real twistor family in moduli space.
By local Torelli theorem, we can take a local lifting, say a small disk ∈ ∆ ⊂ lW ∼= P1. That is , there is a family of

marked complex K3
(X → ∆, (ϕt : H2(Xt,Z) → Λ)t∈∆)

The Hausdorff property of N implies such local lifting is unique.
As p(∆) ⊂ lW , then ϕt(σt) = ⟨Re(σt), Im(σt)⟩ ⊂ W ⊂ ΛR defines a 2-dimensional positive space in W and take

ωt ∈ W so that
W = ⟨Re(σt), Im(σt)⟩ ⊕ Rωt, (ωt)2 > 0.

Using generic properties of twistor lines lW , we know that Xt is a non-algebraic K3 and in this case, the Kahler cone of
Xt is just the cone

{α ∈ H1,1(Xt,R) | α2 > 0}+.

In other words, ωt is a Kahler class on Xt = (M, It). By Yau’s solution of Calabi conjecture, there is Riemannian metric
gt together with another two complex structure Jt, Kt with

ωt(, ) = gt(It, ), σt = ωJt +
√

−1ωKt , JtKt = It = −KtJt, .

Thus we get a twistor family Y → P1 associated to (It, Jt, Kt). Now we are going to show under the period map p,
P1 is identified with the realise GTL lW .

Theorem 1.11. The period map p is surjective.

Proof. For any z ∈ D, take a (X, ϕ) ∈ N and by Proposition , p((X, ϕ)) and z can be connected by finitely many
generic twistor lines connecting them. By Proposition , these lines are lifted to lines in N , thus there is a pair (X ′, ϕ′)
with period p((X ′, ϕ′)) = z.

Injectivity of period map

Proposition 1.12. Let N0 ⊂ N be a connected component, then p : N0 → D is a covering map

Proof. By local Torelli theorem 1.4 and Hausdorff reduction 1.8, we only need to check the criterion 1.13. This can be
done by checking

1. B ⊂ p(C);

2. B − B ⊂ p(C).

These two results imply B ⊂ p(C) and so B = p(C) while p(C) ⊂ B is autmatical. For 1, by the proof of proposition
1.7, any two points x, y in B is connected by the connected by the component of lW ∩ B the intersection of generic
twistor line and B. As B ∩ p(C) nonempty, argue as in proposition 1.10 to get the local lifting in C.

Lemma 1.13 (A criterion of being covering space due to Verbitsky,Markman [1][Proposition A1). ] Let p : M → D be
a local homemorphism of two Hausdorff manifold. Then p is a covering space if and only if for any ball B ⊂ D and each
connected component C of p−1(B), p(C) = B. 6

6That is, a continuous map p : M → D so that for any y ∈ D, there is a small open neighbothood y ∈ Uy ⊂ D such that p−1(Uy) = ⊔ Vj

and p|Vj
: Vj → Uy is homemorphism. This is a pure topological notion.
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Proposition 1.14 (Characterization of Monodromy group). The monodromy group Mon2(X) for a K3 is isomorphic to
O+(Λ).

Proof. First, we recall some basic results about the orthogonal group O(Λ). A key fact is that any g ∈ is composition
of finitely many reflective groups

sδ : v 7→ v − 2v.δ

δ2 δ, δ2 ̸= 0.

This defines a spinor norm O(Λ) → Z/2Z on O(Λ). Set

1 → O+(Λ) → O(Λ) → Z/2Z → 1.

Another key result is that each element of O+(Λ) is of the form sδ1 ◦ · · · ◦ sδm
with δ2

i = −2. Thus, it is reduced to
show any reflection group sδ comes from monodromy. monodromy group is deformation invariant. We may choose a
complex K3 X = (M, I) so that Pic(X) ∼= Zδ. As (−2)-curve on K3 is P1, we get a constraction morphism

X → Y

which maps the (−2)-curve to a A1 point on Y . As A1 curve can be smoothed, and a small deformation of K3 is still
K3, we get a deformation

Y → ∆ = {t | |t| < 1}

with Yt a smooth complex K3 for t ̸= 0 and Y0 ∼= Y . Under base change t 7→ t2, we can get a new family X → ∆ with
X0 ∼= X and Xt

∼= Yt for t ̸= 0. Then apply Picard-Lefschtz formula for the punctured family X∗ → ∆∗, we get the
image of monodromy representation

π(∆∗, t) → O(H2(Xt,Z)) ∼= O(Λ)

is just given by sδ. This shows O+(λ) ≤ Mon2(X).
Last, observe −Id /∈ Mon2(X) and thus O+(λ) = Mon2(X).

Proposition 1.15. p : N0 → D is injectiive.

Proof. This is purely a topological arguments. Note that the period domain D = G/K is simply connected, then the
cover space p : N0 → D from a connected manifold N0 to D must be homemorphism.
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