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Motivation: Compactifications of moduli spaces

Algebraic curves

Algebraic curve = compact Riemann surface

O ED E=9

Figure 1: algebraic curves

o { f(z0,21,22) = 0 } C P? zeros of degree 4 polynomial f is
genus 3 curve;

@ common zeros of degree 2,3 polynomials
{ f(20,21,22) = h(20,21,22) =0 } C P is genus 4 curve.
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Motivation: Compactifications of moduli spaces

Moduli of curve M,

The moduli space M, of fixed genus g is all isomorphic classes as
complex manifolds.

Mg ={%, : }/ =

Fei Si Joint work with F. Greer, R. Laza, Zhiyuan Li, Zhiyu Tian Math



Motivation: Compactifications of moduli spaces

Example: M;

Fei Si Joint work with F. Greer, R. Laza, Zhiyuan Li, Zhiyu Tian Math



Motivation: Compactifications of moduli spaces

Example: M;

g = 1, elliptic curve

M = SL(2,Z)\H = SL(2, Z)\SL(2,R)/SO(2)

Fei Si Joint work with F. Greer, R. Laza, Zhiyuan Li, Zhiyu Tian Math



Motivation: Compactifications of moduli spaces

Example: M;

g = 1, elliptic curve

M = SL(2,Z)\H = SL(2, Z)\SL(2,R)/SO(2)
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Figure 2: moduli of elliptic curve
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Motivation: Compactifications of moduli spaces

Deligne-Mumford compactification

My, is not compact and not good sometimes, eg, many integrals on
M, from mathematical physics do not make sense.

How to compactify M, ?

In 1970s, Deligne-Mumford compactification Mg: adding Nodal
curves to M, locally looks like {(z,y) € C*: zy =0}
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Figure 3: Nodal curve
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Motivation: Compactifications of moduli spaces

Other compactification of M,

@ Mumford-Giesker: : Hilbert scheme and chow variety

@ Schubert: Psesudo stable curves, ie, curve admitting elliptic
tails with a cusp (worse singularity than nodes).

cusp g>1

@ Others - --

A systematical way is proposed by Hassett-Hyeon from perspective
of birational geometry known as Hassett-Keel Program
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Motivation: Compactifications of moduli spaces

Hassett-Keel Program for M,

Divisors:

By [BCHM], define log canonical model of (M, B)

M,(B) :=Proj( @ H°(M,,m(K +j3-B)), B€[0,1]NQ

m>0

where B:= M, — M, = Ag+---+ A_g , is the boundary divisor.

I_%_I
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vary 3: wall-crossing

My(2 < B<1)x My Hilby,,/SL(N)
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Motivation: Compactifications of moduli spaces

First divisorial contraction [B. Hassett, D. Hyeon 2009]

vary 3: wall-crossing

My(2 < B<1)x My Hilby,,/SL(N)

|

My(&<p< )= HZS >~ Chows //SL(bg — 5)

g>1:> cusp g>1
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Guiding Problem: Generilise
the above to moduli space of
quasi-polarised K3
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Story for K3 surfaces

K3 and example

A quasi-polarised K3 surface of genus g is a pair (S, L) where
o A?Qg = Og and m1(S) = 1.
@ L: primitive nef line bundle and L? = 2g — 2 > 0.
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Story for K3 surfaces

K3 and example

Definition

A quasi-polarised K3 surface of genus g is a pair (S, L) where
[ /\2QS = (g and 7T1(S) = 1.
@ L: primitive nef line bundle and L? = 2g — 2 > 0.

complete intersection of cubic and quadric
S={z+-23=0, q(20,..,23) =0 } C P¢.
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Story for K3 surfaces

Moduli space of genus g K3 surfaces F,

Global Torelli: moduli space of quasi-polarised K3 of genus g
F,=T,\50(2,19)/(5S0(2) x SO(19))

Is non-compact !
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Story for K3 surfaces

Moduli space of genus g K3 surfaces F,

Global Torelli: moduli space of quasi-polarised K3 of genus g
F,=T,\50(2,19)/(5S0(2) x SO(19))

Is non-compact !

Noether-Lefschetz divisors:

Dg’h::{(S,L)EFg: L|2g9—2 d }
B d 2h — 2
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°

KSBA: g = 2 by R. Laza 2009, ellipptic K3 with marked fiber
by Ascher - Bejleri 2018.

e log K-stability : (IP?,c- D) by Ascher - DeVleming - Liu 2019.
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Story for K3 surfaces

Summaries of Known Compactifications for F

Arithmetic side: Baily-Borel 1956, Looijenga 2002 - - -
GIT side: g = 2,3 by J. Shah 1980-1984.

Log geometry: Olsson 2004

KSBA: g = 2 by R. Laza 2009, ellipptic K3 with marked fiber
by Ascher - Bejleri 2018.

log K-stability : (P2, c- D) by Ascher - DeVleming - Liu 2019.

@ Metric side: Gromov-Hausdroff metric by Odaka - Oshima
2019 .

@ Tropical geometry: Alexeev - Engel - Thompson 2019.

@ Mirror symmetry: Hacking - Keel - Gross - Siebert 2019.
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Story for K3 surfaces

Hasset-Keel-Looijenga for 7,

Parallel to Mg, define

Fy(a) := Proj(R(Fy ,Kp, +a- B), (1)

where B is a certain combination of Noether-Lefschetz divisors.
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Story for K3 surfaces

—BB

Hasset-Keel-Looijenga for F

Parallel to Mg, define

Fy(a) := Proj(R(Fy ,Kp, +a- B), (1)

where B is a certain combination of Noether-Lefschetz divisors.

Warning: It is known that Fj is log canonical but not kawamata
log terminal.

Current knowledge of MMP can not ensure the finite generation of
R(Fg, KFg +a- B)
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Story for K3 surfaces

Conjectural Prediction for HKL Program for K3

The parameter a € Q N [0, 1] admits a chamber structure with
finite many walls 0 < ag < --- < ap, < 1.
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Story for K3 surfaces

Conjectural Prediction for HKL Program for K3

The parameter a € Q N [0, 1] admits a chamber structure with
finite many walls 0 < ag < --- < ap, < 1.

@ when a € (a;—1,a;), all Fg(a) are isomorphic, we denote
Fg(ai—1,a;);
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Story for K3 surfaces

Conjectural Prediction for HKL Program for K3

The parameter a € Q N [0, 1] admits a chamber structure with
finite many walls 0 < ag < --- < ap, < 1.

@ when a € (a;—1,a;), all Fg(a) are isomorphic, we denote
Fg(ai—h ai);

@ when a crosses some wall a;, there is a birational map
(typically a flip)

Fg(ai-1,a:) Fo(as, aiy1)
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Current Status

Evidence for the Predictions

g = 2, Picard number of F5 is 2 and Hasset-Keel-Looijenga is easy
by J. Shah 1980;
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Evidence for the Predictions

g = 2, Picard number of F5 is 2 and Hasset-Keel-Looijenga is easy
by J. Shah 1980;

g = 3, there is a series of work K. O'Grady and R. Laza
(2016-2018). They give a conjectural picture of the Wall-crossing

phenomenon based on some arithmetic consideration and verified
partially.
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Current Status

Evidence for the Predictions

g = 2, Picard number of F5 is 2 and Hasset-Keel-Looijenga is easy
by J. Shah 1980;

g = 3, there is a series of work K. O'Grady and R. Laza
(2016-2018). They give a conjectural picture of the Wall-crossing
phenomenon based on some arithmetic consideration and verified
partially.

g = 3, verified partially via K-stabilty by Ascher - DeVleming - Liu
In progress
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Current Status

Genus g = 4 K3 surface and VGIT

@ A general quasi-polarized K3 surface (S, L) of genus 4 K3
surface is a complete intersection of cubics and quadrics in P2.
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Genus g = 4 K3 surface and VGIT

@ A general quasi-polarized K3 surface (S, L) of genus 4 K3
surface is a complete intersection of cubics and quadrics in P2.

o Parameter space 7 : P(E) — |Ops(2)| = P, fiber at [q]:

Eig =1{f €|0ps(3)| : ¢ is not a factor of f}
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@ A general quasi-polarized K3 surface (S, L) of genus 4 K3
surface is a complete intersection of cubics and quadrics in P2.

e Parameter space 7 : P(E) — |Opa(2)| = P4, fiber at [q]:
Eig =1/ €[O0ps(3)] : ¢ is not a factor of f}

line bundle Hy =t-h+nis ample if and only if 0 <t < %
where 1 := 7*Op14(1) and h := Opg)(1)
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Genus g = 4 K3 surface and VGIT

@ A general quasi-polarized K3 surface (S, L) of genus 4 K3
surface is a complete intersection of cubics and quadrics in P2.

e Parameter space 7 : P(E) — |Opa(2)| = P4, fiber at [q]:
Eig =1/ €[O0ps(3)] : ¢ is not a factor of f}

line bundle Hy =t-h+nis ample if and only if 0 <t < %
where 1 := 7*Op14(1) and h := Opg)(1)

define Variation of Geometric invariant theory (VGIT)

M(t) :=PE )y, SL(5), t>0
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Current Status

Other parameter spaces

@ |Og(3)|: sections space on a fixed smooth quadric 3-fold;
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@ |Og(3)|: sections space on a fixed smooth quadric 3-fold;

@ Chow: the main irreducible component of chow variety
parametrizing 2-cycles in P* of degree 6;
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Current Status

Other parameter spaces

@ |Og(3)|: sections space on a fixed smooth quadric 3-fold;

@ Chow: the main irreducible component of chow variety
parametrizing 2-cycles in P* of degree 6;

@ Ag : Hilbert scheme of singular cubic 4-folds.
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Current Status

Theorem (Greer-Laza-Li-Si-Tian, 2019)

@ we have identification
0o 0< t < =, M(t) = |0q(3)|/SO(5) .
° t = 3 i)ﬁ( ) = Chow //SL(5)
=1, M(t) = (Ao /SL(6))"
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Current Status

Theorem (Greer-Laza-Li-Si-Tian, 2019)

@ we have identification
0o 0<t< % M(t) = |0g(3)|)SO5) .
o t =2, M(t) = Chow/SL(5)
o t=1, M(t) = (Ay/SL(6))

@ The walls of VGIT for 0 <t < 1 are the following

6°7°89°2711°127 13’3

{123416 7 82}
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Current Status

Wall-Crossing

first wall-crossing: divisorial contraction
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Current Status

HKL for genus 4

We choose B such that

K+a-B=X+5s-(Doo+Di1+D21+Ds1)

Fei Si Joint work with F. Greer, R. Laza, Zhiyuan Li, Zhiyu Tian Math



Current Status

HKL for genus 4

We choose B such that

K+a-B=X+5s-(Doo+Di11+D21+D3;1)

then we can show

Theorem (Greer-Laza-Li-Si-Tian)

M(t) = Fa(B(2))

for certain rational function [(t).
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Thanks for your attention !
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